1
|
Effantin G, Kandiah E, Pelosse M. Structure of AcMNPV nucleocapsid reveals DNA portal organization and packaging apparatus of circular dsDNA baculovirus. Nat Commun 2025; 16:4844. [PMID: 40413174 PMCID: PMC12103608 DOI: 10.1038/s41467-025-60152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Baculoviruses are large DNA viruses found in nature propagating amongst insects and lepidoptera in particular. They have been studied for decades and are nowadays considered as invaluable biotechnology tools used as biopesticides, recombinant expression systems or delivery vehicle for gene therapy. However, little is known about the baculovirus nucleocapsid assembly at a molecular level. Here, we solve the whole structure of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid by applying cryo-electron microscopy (CryoEM) combined with de novo modelling and Alphafold predictions. Our structure completes prior observations and elucidates the intricate architecture of the apical cap, unravelling the organization of a DNA portal featuring intriguing symmetry mismatches between its core and vertex. The core, closing the capsid at the apex, holds two DNA helices of the viral genome tethered to Ac54 proteins. Different symmetry components at the apical cap and basal structure are constituted of the same building block, made of Ac101/Ac144, proving the versatility of this modular pair. The crown forming the portal vertex displays a C21 symmetry and contains, amongst others, the motor-like protein Ac66. Our findings support the viral portal to be involved in DNA packaging, probably in conjunction with other parts of a larger DNA packaging apparatus.
Collapse
Affiliation(s)
- Gregory Effantin
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France.
| | - Eaazhisai Kandiah
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000, Grenoble, France.
| | - Martin Pelosse
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex, France.
| |
Collapse
|
2
|
Yu X, Teng T, Duan Z, Wang J. AcMNPV-miR-2 affects Autographa californica nucleopolyhedrovirus infection by regulating the expression of ac28 and several other viral early genes. J Virol 2024; 98:e0057024. [PMID: 39023251 PMCID: PMC11334470 DOI: 10.1128/jvi.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Virus-encoded microRNAs (miRNAs) exert diverse regulatory roles in the biological processes of both viruses and hosts. This study delves into the functions of AcMNPV-miR-2, an early miRNA encoded by Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV-miR-2 targets viral early genes ac28 (lef-6), ac37 (lef-11), ac49, and ac63. Overexpression of AcMNPV-miR-2 leads to reduced production of infectious budded virions (BVs) and diminished viral DNA replication. Delayed polyhedron formation was observed through light and transmission electron microscopy, and the larval lifespan extended in oral infection assays. Moreover, the mRNA expression levels of two Lepidoptera-specific immune-related proteins, Gloverin and Spod-11-tox, significantly decreased. These findings indicate that AcMNPV-miR-2 restrains viral load, reducing host immune sensitivity. This beneficial effect enables the virus to combat host defense mechanisms and reside within the host for an extended duration. IMPORTANCE Virus-encoded miRNAs have been extensively studied for their pivotal roles in finetuning viral infections. Baculoviruses, highly pathogenic in insects, remain underexplored concerning their encoded miRNAs. Previous reports outlined three AcMNPV-encoded miRNAs, AcMNPV-miR-1, -miR-3, and -miR-4. This study delves into the functions of another AcMNPV-encoded miRNA, AcMNPV-miR-2 (Ac-miR-2). Through a comprehensive analysis of target gene expression, the impact on larvae, and variations in host immune-related gene expression, we elucidate a functional pathway for Ac-miR-2. This miRNA suppresses viral load and infectivity and prolongs lifespans of infected larva by downregulating specific viral early genes and host immune-related genes. These mechanisms ultimately serve the virus's primary goal of enhanced propagation. Our study significantly contributes to understanding of the intricate regulatory mechanisms of virus-encoded miRNAs in baculovirus infections.
Collapse
Affiliation(s)
- Xinghua Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tingkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuowen Duan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Motta LF, Cerrudo CS, Belaich MN. A Comprehensive Study of MicroRNA in Baculoviruses. Int J Mol Sci 2024; 25:603. [PMID: 38203774 PMCID: PMC10778818 DOI: 10.3390/ijms25010603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Baculoviruses are viral pathogens that infect different species of Lepidoptera, Diptera, and Hymenoptera, with a global distribution. Due to their biological characteristics and the biotechnological applications derived from these entities, the Baculoviridae family is an important subject of study and manipulation in the natural sciences. With the advent of RNA interference mechanisms, the presence of baculoviral genes that do not code for proteins but instead generate transcripts similar to microRNAs (miRNAs) has been described. These miRNAs are functionally associated with the regulation of gene expression, both in viral and host sequences. This article provides a comprehensive review of miRNA biogenesis, function, and characterization in general, with a specific focus on those identified in baculoviruses. Furthermore, it delves into the specific roles of baculoviral miRNAs in regulating viral and host genes and presents structural and thermodynamic stability studies that are useful for detecting shared characteristics with predictive utility. This review aims to expand our understanding of the baculoviral miRNAome, contributing to improvements in the production of baculovirus-based biopesticides, management of resistance phenomena in pests, enhancement of recombinant protein production systems, and development of diverse and improved BacMam vectors to meet biomedical demands.
Collapse
Affiliation(s)
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
| |
Collapse
|
4
|
Zhao J, Teng T, Wang J. An Autographa californica nucleopolyhedrovirus-encoded microRNA, AcMNPV-miR-4, downregulates the expression of host gene alg-2. J Gen Virol 2022; 103. [PMID: 35830328 DOI: 10.1099/jgv.0.001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa california multiple nucleopolyhedrovirus (AcMNPV)-encoded microRNAs (miRNAs) that regulate viral genes to achieve infection have been reported previously. Here, we report another AcMNPV encoded miRNA, AcMNPV-miR-4 (Ac-miR-4), which downregulated the host gene, apoptosis-linked gene (alg-2). This regulation was verified by dual-luciferase reporter assays. The effects of Ac-miR-4 on virus infection were assessed. The results showed that the production of infectious budded virions (BV) was decreased and the occlusion-derived virion (ODV) embedding into polyhedra was delayed when Sf9 cells were administered an overdose of Ac-miR-4. All these findings suggest that Ac-miR-4 prolongs cell lifespan and reduces virus virulence at a relatively early stage but increases ODV at a very late stage. This finding may be attributed to the downregulation effects of alg-2, which lead to weakened ALG-2 related functions, such as cell apoptosis, vesicle budding and protein transport.
Collapse
Affiliation(s)
- Jin Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 518107, PR China
| | - Tingkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
5
|
Ma C, Zhang X, Li X, Ding W, Feng Y. An embryonic cell line from the American cockroach Periplaneta americana L. (Blattaria: Blattidae) exhibits susceptibility to AcMNPV. In Vitro Cell Dev Biol Anim 2022; 58:278-288. [PMID: 35460045 DOI: 10.1007/s11626-021-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/05/2022]
Abstract
Although the baculovirus expression vector system (BEVS) is widely used in the production of recombinant proteins, only a few lepidopteran insect cell lines have been successfully used so far. This study aimed at evaluating the characteristics of an embryonic cell line from the American cockroach Periplaneta americana L., RIRI-PA1, and determining whether it could be used in recombinant protein expression. Wild type Autographa californica multiple nucleopolyhedrovirus (AcMNPV-wt) and green fluorescent protein (GFP)-replicating recombinant baculoviruses (AcMNPV-GFP) were used to infect RIRI-PA1 respectively, demonstrating that RIRI-PA1 cells could be infected by AcMNPV and express recombinant proteins. Within 24 h of infection with AcMNPV-GFP, the GFP expression was higher than that in Sf21 cells. Furthermore, the infection of RIRI-PA1 cells increased gradually (multiplicity of infection, 10) within 24 h, while in Sf21 cells, the infection only began to increase within 48 h. However, after exposure for 96-168 h, the virus progeny and recombinant protein production of RIRI-PA1 cells was lower than those of Sf21 cells. Western blotting revealed that RIRI-PA1 cells could express recombinant GFP, and the protein expression level positively correlated with the multiplicity of infection. In conclusion, this is the first report that a cell line from P. americana has shown susceptibility to infection from a baculovirus and likewise express recombinant protein. Although the yield of recombinant GFP was not as high as that of Sf21 cells, the results nonetheless showed that RIRI-PA1 had an infection rate advantage in the short term (within 24 h of infection), which is of great value for further development and utilization.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
6
|
The Membrane-Anchoring Region of the AcMNPV P74 Protein Is Expendable or Interchangeable with Homologs from Other Species. Viruses 2021; 13:v13122416. [PMID: 34960685 PMCID: PMC8704774 DOI: 10.3390/v13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.
Collapse
|
7
|
Zhao S, Kong X, Wu X. RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104116. [PMID: 33991532 DOI: 10.1016/j.dci.2021.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Protection against viral infection in hosts concerns diverse cellular and molecular mechanisms, among which RNA interference (RNAi) response is a vital one. Small interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI interacting RNAs (piRNAs) are primary categories of small RNAs involved in RNAi response, playing significant roles in restraining viral invasion. However, during a long-term coevolution, viruses have gained the ability to evade, avoid, or suppress antiviral immunity to ensure efficient replication and transmission. Baculoviruses are enveloped, insect-pathogenic viruses with double-stranded circular DNA genomes, which encode suppressors of siRNA pathway and miRNAs targeting immune-related genes to mask the antiviral activity of their hosts. This review summarized recent findings for the RNAi-based antiviral immunity in insects as well as the strategies that baculoviruses exploit to break the shield of host siRNA pathway, and hijack cellular miRNAs or encode their own miRNAs that regulate both viral and cellular gene expression to create a favorable environment for viral infection.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Awais MM, Shakeel M, Sun J. MicroRNA-Mediated Host-Pathogen Interactions Between Bombyx mori and Viruses. Front Physiol 2021; 12:672205. [PMID: 34025458 PMCID: PMC8137832 DOI: 10.3389/fphys.2021.672205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs of about 22 nucleotides, have been reported to regulate gene expression at the posttranscriptional level and are involved in several biological processes such as immunity, development, metabolism, and host-pathogen interactions. Apart from miRNAs encoded by the host, miRNAs produced by pathogens also regulate host genes to facilitate virus replication and evasion of the host defense responses. In recent years, accumulated studies suggest that viral infections alter the host miRNAs expression profile, and both cellular and viral miRNAs may play vital roles in host-pathogen interactions. Bombyx mori, one of the critical lepidopteran model species, is an economically important insect for silk production. The mechanism of interaction between B. mori and its pathogens and their regulation by miRNAs has been extensively studied. Therefore, in this review, we aim to highlight the recent information and understanding of the virus-encoding miRNAs and their functions in modulating viral and host (B. mori) genes. Additionally, the response of B. mori derived miRNAs to viral infection is also discussed. A detailed critical view about miRNAs’ regulatory roles in B. mori-virus interactions will help us understand molecular networks and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Innovation and Application of Guandong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Singh CP. Viral-encoded microRNAs in host-pathogen interactions in silkworm. Microrna 2021; 10:3-13. [PMID: 33475082 DOI: 10.2174/2211536610666210121154314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
The mulberry silkworm Bombyx mori, apart from its well-known economic importance, has also emerged as an insect model to study host-pathogen interactions. The major concern for silkworm cultivation and the sericulture industry is the attack by various types of pathogens mainly includes viruses, fungi, bacteria and protozoa. Successful infection requires specific arsenals to counter the host immune response. MicroRNAs (miRNAs) are one of the potential arsenals which are encoded by viruses and effectively used during host-pathogen interactions. MiRNAs are short noncoding 19-25 nucleotides long endogenous RNAs that post-transcriptionally regulate expression of protein-coding genes in a sequencespecific manner. Most of the higher eukaryotes encode miRNAs and utilize them in the regulation of important cellular pathways. In silkworm, promising functions of miRNAs have been characterized in development, metamorphosis, immunity, and host-pathogen interactions. The viral miRNA-mediated fine-tuning of the viral, as well as cellular genes, is beneficial for making a cellular environment favorable for the virus proliferation. Baculovirus and cypovirus which infect silkworm have been shown to encode miRNAs and their functions are implicated in controlling the expression of both viral and host genes. In the present review, the author discusses the diverse functions of viral-encoded miRNAs in evasion of the host immune responses and reshaping of the silkworm cellular environment for replication. Besides, a basic overview of miRNA biogenesis and mechanism of action is also provided. Our increasing understanding of the viral miRNAs role in silkworm-virus interactions would not only assist us to get insights into the intricate pathways but also provide tools to deal with dreaded pathogens.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur-302004, Rajasthan. India
| |
Collapse
|
10
|
Singh CP. Role of microRNAs in insect-baculovirus interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103459. [PMID: 32961323 DOI: 10.1016/j.ibmb.2020.103459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) constitute a novel class of gene expression regulators and are found to be involved in regulating a wide range of biological processes such as development, cell cycle, metabolism, apoptosis, immunity, host-pathogen interactions etc. Generally miRNAs negatively regulate the gene expression at the post-transcriptional level by binding to the complementary target mRNA sequences. These tiny molecules are abundantly found in higher eukaryotes and viruses. Most of the DNA viruses of animals and insects encode miRNAs including baculoviruses. Baculoviruses are the insect-specific viruses that cause severe infection and mortality mainly in insect larvae of the order Lepidoptera, Diptera, and Hymenoptera. These enveloped viruses have multiple applications in biotechnology and biological pest control methods. For a better understanding of baculoviruses, it is necessary to elucidate the molecular basis of insect-baculovirus interactions. Recent advancement in the technologies for studying the gene expression has accelerated the discovery of new players in the insect-baculovirus interactions. MiRNAs are the emerging and fate-determining players of host-viral interactions. The long history of host and virus co-evolution suggests that the virus keeps on evolving its arsenals to succeed in infection whereas the host continues investing in antiviral defense mechanisms. In this review, I aim to highlight the recent information and understanding of the baculovirus-encoding miRNAs and their functions in regulating viral as well as host genes. Additionally, insect-derived miRNAs response to baculovirus infection is also discussed. A detailed critical view about the regulatory roles of miRNAs in insect-baculovirus interactions will help us to understand molecular networks amid these interactions and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur, 302004, Rajasthan, India.
| |
Collapse
|
11
|
Wang J, Xing K, Xiong P, Liang H, Zhu M, Zhao J, Yu X, Ning X, Li R, Wang X. Identification of miRNAs encoded by Autographa californica nucleopolyhedrovirus. J Gen Virol 2020; 102. [PMID: 33236978 DOI: 10.1099/jgv.0.001510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Two Autographa californica nucleopolyhedrovirus (AcMNPV) encoded miRNAs, AcMNPV-miR-1 and AcMNPV-miR-3, have been reported by us in 2013 and 2019, respectively. Here, we present an integrated investigation of AcMNPV-encoded miRNAs, which include the above two miRNAs and three additional newly identified miRNAs. Six candidate miRNAs were predicted through small RNA deep sequencing and bioinformatics, of which, five were validated. Three miRNAs are located opposite the coding sequences, the other two are located in the coding sequences of viral genes. Targets in both virus and host were predicted and subsequently tested using dual-luciferase reporter assays. The validated targets were found mainly in AcMNPV, except for the targets of AcMNPV-miR-4, which are all host genes. Based on reporter assays, the five miRNAs predominantly function by down-regulating their targets. The transcription start sites of these miRNAs were bioinformatic screened based on known baculovirus promoter motifs. Our study reveals that AcMNPV-encoded miRNAs function as fine modulators of the interactions between host and virus by regulating viral and/or host genes.
Collapse
Affiliation(s)
- Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ke Xing
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Peiwen Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hai Liang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengxiao Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xinghua Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaolian Ning
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Runcai Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xunzhang Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|