1
|
Albarella D, Dall’Ara P, Rossi L, Turin L. Bacteriophage Therapy in Freshwater and Saltwater Aquaculture Species. Microorganisms 2025; 13:831. [PMID: 40284667 PMCID: PMC12029768 DOI: 10.3390/microorganisms13040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Bacteriophages, or phages, which are viruses with specifically restricted tropism for bacteria, have regained interest in the last few decades as alternative therapeutic agents against antibiotic-resistant pathogenic bacteria in animals and humans worldwide. In this context, bacteriophage therapy has been developed to treat bacterial infections of cultured fish, shellfish, and crustaceans. Nowadays, aquaculture is the only feasible solution to meet the continuously growing global demand for high-quality seafood. As such, it is crucial to focus on controlling the spread of pathogenic bacteria, as they have a significant economic impact on aquaculture systems. Overall, the documented research supports the application of bacteriophage therapy in aquaculture, but also underlies the need for additional studies, as it is still mostly in the scientific stage. This review aims to highlight and critically examine recent advancements in the application of bacteriophages to treat the most common bacterial infectious diseases in both freshwater and saltwater aquaculture species, providing topical perspectives and innovative advances.
Collapse
Affiliation(s)
| | | | | | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; (D.A.); (P.D.); (L.R.)
| |
Collapse
|
2
|
Amillano-Cisneros JM, Fuentes-Valencia MA, Leyva-Morales JB, Savín-Amador M, Márquez-Pacheco H, Bastidas-Bastidas PDJ, Leyva-Camacho L, De la Torre-Espinosa ZY, Badilla-Medina CN. Effects of Microorganisms in Fish Aquaculture from a Sustainable Approach: A Review. Microorganisms 2025; 13:485. [PMID: 40142378 PMCID: PMC11945242 DOI: 10.3390/microorganisms13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Aquaculture is the fastest-growing food production sector. However, it faces significant challenges, including demand from a growing global population, which is estimated to reach 10.4 billion by the year 2100, disease outbreaks, environmental impacts, and the overuse of antibiotics. To address these issues, sustainable alternatives such as the use of microorganisms (probiotics, bacteriophages, and genetically modified microorganisms) have gained attention. This review examines the effects of these microorganisms on fish aquaculture, focusing on their potential to improve growth, health, and disease resistance while reducing environmental impacts. Probiotics, particularly lactic acid bacteria and yeasts, have been shown to enhance immune responses, digestive enzyme activity, and nutrient absorption in fish. Bacteriophages offer a promising alternative to antibiotics for controlling bacterial pathogens, with studies demonstrating their efficacy in reducing mortality rates in infected fish. Additionally, genetically modified microorganisms (GMMs) have been explored for their ability to produce beneficial compounds, such as enzymes and antimicrobial peptides, which can improve fish health and reduce the need for chemical treatments. Despite their potential, challenges such as regulatory hurdles, public acceptance, and environmental risks must be addressed. This review highlights the importance of further research to optimize the use of microorganisms in aquaculture and underscores their role in promoting sustainable practices. By integrating these biological tools, the aquaculture industry can move towards a more sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Jesús Mateo Amillano-Cisneros
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Maestría en Biotecnología Agropecuaria, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | - María Anel Fuentes-Valencia
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Maestría en Biotecnología Agropecuaria, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | - José Belisario Leyva-Morales
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42184, Mexico
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago de Chile 8370993, Chile
| | - Macario Savín-Amador
- Coordinación de Ingenierías, Universidad Tecnológica de La Paz, La Paz 23088, Mexico
| | - Henri Márquez-Pacheco
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | | | - Lucía Leyva-Camacho
- Departamento de Salud-Licenciatura en Ciencias Biomédicas, Universidad Autónoma de Occidente, Guasave 81044, Mexico
| | | | - César Noé Badilla-Medina
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| |
Collapse
|
3
|
Zheng Y, Zhu H, Li Q, Xu G. The Effects of Different Feeding Regimes on Body Composition, Gut Microbial Population, and Susceptibility to Pathogenic Infection in Largemouth Bass. Microorganisms 2023; 11:1356. [PMID: 37317330 DOI: 10.3390/microorganisms11051356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
This study investigated the effects of dietary commercial feed (n = 50,025 in triplicate, named group PF for soil dike pond, sampling n = 7; n = 15,000 in triplicate, WF for water tank, n = 8), iced fish (n = 50,025 in triplicate, PI, n = 7), and a combination of both (n = 50,025 in triplicate, PFI, n = 8) on different metabolic parameters of the largemouth bass, Micropterus salmoides (0.67 ± 0.09 g, culture period from June 2017 to July 2018). Throughout the experimental period, different areas of water (including input water of the front, middle of the pond, and from the drain off at the back) and their mixed samples were simultaneously analyzed to find the source of the main infectious bacteria. Various feeding strategies may differentially affect body composition and shape the gut microbiota, but the mode of action has not been determined. Results showed that no significant differences were found in the growth performance except for the product yield using a different culture mode (PFI vs. WF). For muscle composition, the higher ∑SFA, ∑MUFA, ∑n-6PUFA, and 18:3n-3/18:2n-6 levels were detected in largemouth bass fed with iced fish, while enrichment in ∑n-3PUFA and ∑HUFA was detected in largemouth bass fed with commercial feed. For the gut microbiota, Fusobacteria, Proteobacteria, and Firmicutes were the most dominant phyla among all the gut samples. The abundance of Firmicutes and Tenericutes significantly decreased and later increased with iced fish feeding. The relative abundance of species from the Clostridia, Mollicutes, Mycoplasmatales, and families (Clostridiaceae and Mycoplasmataceae) significantly increased in the feed plus iced fish (PFI) group relative to that in the iced fish (PI) group. Pathways of carbohydrate metabolism and the digestive system were enriched in the commercial feed group, whereas infectious bacterial disease resistance-related pathways were enriched in the iced fish group, corresponding to the higher rate of death, fatty liver disease, and frequency and duration of cyanobacteria outbreaks. Feeding with iced fish resulted in more activities in the digestive system and energy metabolism, more efficient fatty acid metabolism, had higher ∑MUFA, and simultaneously had the potential for protection against infectious bacteria from the environment through a change in intestinal microbiota in the pond of largemouth bass culturing. Finally, the difference in feed related to the digestive system may contribute to the significant microbiota branch in the fish gut, and the input and outflow of water affects the intestinal flora in the surrounding water and in the gut, which in turn affects growth and disease resistance.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| |
Collapse
|
4
|
Qian Q, Chen Z, Xu J, Zhu Y, Xu W, Gao X, Jiang Q, Zhang X. Pathogenicity of Plesiomonas shigelloides causing mass mortalities of largemouth bass (Micropterus salmoides) and its induced host immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108487. [PMID: 36503060 DOI: 10.1016/j.fsi.2022.108487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The outbreak of mass mortality of M. salmoides occurred in an aquaculture farm in Jiangsu province of China, showing signs of skin ulceration and haemorrhages. The bacteria were isolated from diseased largemouth bass, and identified as Plesiomonas shigelloides based on morphological, physiological and biochemical features, as well as 16S rRNA gene sequence analysis. The pathogenicity of P. shigelloides was determined by challenge experiments, and the median lethal dosage (LD50) of the isolate NJS1 for M. salmoides was calculated as 1.6 × 105 CFU/mL at 7 d post-infection. Histopathological analysis revealed that extensive necrosis, vacuolization and inflammation were presented in the kidney, liver and gill of the diseased fish. Detection of virulence-related genes showed that P. shigelloides NJS1 was positive for astA, astB, astD, astE, actP and 6 ahpA. Additionally, the host defensive response of M. salmoides infected by P. shigelloides was analyzed by quantitive real-time PCR (qRT-PCR), and the results showed that the expression levels of Cas3, Hep1, HIF, IgM, IL15 and TGF were significantly up-regulated in head kidney, liver and spleen in different hours post-infection, which revealed varying expression profiles and clear transcriptional activation of immune related genes. The results suggested that P. shigelloides was an etiological element in the mass mortalities of M. salmoides and this study provided deeper insights for the pathogenesis and host defensive system in P. shigelloides invasion.
Collapse
Affiliation(s)
- Qieqi Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingwen Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yujie Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenjing Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol (Praha) 2022; 67:573-590. [PMID: 35305247 DOI: 10.1007/s12223-022-00965-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
The escalation of antibiotic resistance has revitalized bacteriophage (phage) therapy. Recently, phage therapy has been gradually applied in medicine, agriculture, food, and environmental fields due to its distinctive features of high efficiency, specificity, and environmental friendliness compared to antibiotics. Likewise, phage therapy also holds great promise in controlling pathogenic bacteria in aquaculture. The application of phage therapy instead of antibiotics to eliminate pathogenic bacteria such as Vibrio, Pseudomonas, Aeromonas, and Flavobacterium and to reduce fish mortality in aquaculture has been frequently reported. In this context, the present review summarizes and analyzes the current status of phage therapy in aquaculture, focusing on the key parameters of phage application, such as phage isolation, selection, dosage, and administration modes, and introducing the strategies and methods to boost efficacy and restrain the emergence of resistance. In addition, we discussed the human safety, environmental friendliness, and techno-economic practicability of phage therapy in aquaculture. Finally, this review outlines the current challenges of phage therapy application in aquaculture from the perspectives of phage resistance, phage-mediated resistance gene transfer, and effects on the host immune system.
Collapse
|
6
|
Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022; 14:v14020167. [PMID: 35215761 PMCID: PMC8879335 DOI: 10.3390/v14020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.
Collapse
|