1
|
Hernández-Velázquez IM, Zamora-Briseño JA, Hernández-Bolio GI, Hernández-Nuñez E, Lozano-Álvarez E, Briones-Fourzán P, Rodríguez-Canul R. Metabolic changes in antennal glands of Caribbean spiny lobsters Panulirus argus infected by Panulirus argus virus 1 (PaV1). DISEASES OF AQUATIC ORGANISMS 2022; 151:11-22. [PMID: 36047670 DOI: 10.3354/dao03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Panulirus argus virus 1 (PaV1) (Family Mininucleoviridae) causes chronic and systemic infection in wild juvenile spiny lobsters Panulirus argus (Latreille, 1804), ending in death by starvation and metabolic wasting. In marine decapods, the antennal gland is involved in osmoregulation and excretion. In this compact organ, fluid is filtered from the hemolymph, and ions are reabsorbed to produce a hypotonic urine. Although PaV1 is released with the urine in infected individuals, little is known regarding the metabolic effect of PaV1 in the antennal gland. The objective of this study was to perform a comparative evaluation of the metabolic profile of the antennal gland of clinically PaV1-infected lobsters versus those with no clinical signs of infection, using proton nuclear magnetic resonance analysis. Overall, 48 compounds were identified, and the most represented metabolites were those involved in carbohydrate, amino acid, energy, and nucleotide metabolism. Most of the metabolites that were down-regulated in the infected group were essential and non-essential amino acids. Some metabolites involved in the urea cycle and carbohydrate metabolism were also altered. This study represents a first approach to the metabolic evaluation of the antennal gland. We broadly discuss alterations in the content of several proteinogenic and non-proteinogenic amino acids and other key metabolites involved in energetic and nucleotide metabolism.
Collapse
Affiliation(s)
- Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Carr. Mérida-Progreso, CP 97310 Mérida, Yucatán, México
| | | | | | | | | | | | | |
Collapse
|
2
|
Pascual C, Rodríguez-Canul R, Huchin-Mian JP, Mascaró M, Briones-Fourzán P, Lozano-Álvarez E, Sánchez A, Escalante K. Immune Response to Natural and Experimental Infection of Panulirus argus Virus 1 (PaV1) in Juveniles of Caribbean Spiny Lobster. Animals (Basel) 2022; 12:ani12151951. [PMID: 35953940 PMCID: PMC9367466 DOI: 10.3390/ani12151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Experimental immunological challenges are widely used to corroborate the success of breeding programs for lines resistant to specific pathogens, to test the efficiency of new vaccines, and to improve immunity of cultured animals. The validation of experimental infection protocols is complex because it requires comparison with naturally infected organisms at different stages of the infection. The present study compares the immune response of lobsters under a natural process of viral infection (PaV1), versus the defense response of experimentally infected organisms. Innate immunity for infected lobsters was measured through cellular and plasmatic components. The results indicate that the immune response of organisms naturally or experimentally infected by PaV1 was similar, and provides the bases to corroborate that the immunological challenge was not exacerbated. Appropriate infection protocols can be useful for research aimed at increasing resistance to infectious diseases and reducing the use of antibiotics in aquaculture. Abstract Experimental infections have been used to better comprehend the immune system of organisms, and to probe for additives that generate greater resistance and help reduce antibiotic use in aquaculture. We compared the immune response of juveniles of the Caribbean spiny lobster, Panulirus argus, infected naturally with Panulirus argus virus 1 (PaV1) versus organisms infected experimentally, to determine the analogy between both infectious processes. The immunological response was measured by hemagglutination activity, hemocyte count, and total phenoloxidase activity in plasma and hemocytes in 211 individuals that were either naturally infected (110), or had been injected with viral inoculum and followed for six months (101). The samples were classified into the following four groups according to the severity of the infection: 0, uninfected; 1, lightly; 2, moderately; and 3, severely infected), which was determined on the basis of PCR and histological criteria. A permutational MANOVA showed that both the origin (natural and experimental), and the severity of the infection contributed significantly to explain the variation in the immune response of lobsters. The lack of significance of the interaction term indicated that the immunological response changed with the severity of the infection in a similar way, regardless of its origin. The results of the present study suggest that the experimental viral infection of PaV1 produces a defense response similar to the natural pathways of contagion, and provides the bases to validate an immunological challenge protocol for the first time in crustaceans. The discussion includes the perspective of the conceptual models of immune response within an ecological context.
Collapse
Affiliation(s)
- Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
- Correspondence:
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico;
| | - Juan Pablo Huchin-Mian
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36000, Mexico;
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Patricia Briones-Fourzán
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Enrique Lozano-Álvarez
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Ariadna Sánchez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Karla Escalante
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| |
Collapse
|