1
|
Yao X, Lu WH, Qiao WT, Zhang YQ, Zhang BY, Li HX, Li JL. The highly pathogenic strain of porcine deltacoronavirus disrupts the intestinal barrier and causes diarrhea in newborn piglets. Virulence 2025; 16:2446742. [PMID: 39758030 DOI: 10.1080/21505594.2024.2446742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China. A genome-wide based phylogenetic analysis suggests that 97.5% to 99.2% homology existed in the whole genomes of other strains. Five amino acid mutations are seen for the first time in the S protein. By constructing 3D models, it was found that the S1-NTD/CTD and S2-HR-C regions produced structural alterations. Protein functional analysis showed that the structural changes of the three regions changed the epitope of S protein, the O-GalNAc glycosylation site and the 3C-like protease cleavage site. In addition, oral administration of 107 TCID50 CH/LNFX/2022 to newborn piglets successfully reproduced obvious clinical signs of piglets, such as diarrhea and dehydration. Meanwhile, PDCoV antigen was detected by immunofluorescence in the small intestine, and microscopic lesions and intestinal mucosal barrier destruction were detected by histological observation and scanning electron microscopy. Our study confirmed that porcine coronavirus strains increased pathogenicity through evolution, damaged the intestinal barrier of newborn piglets, and caused diarrhea in pigs. This study provided the candidate strains and theoretical basis for establishing the prevention and control system of vaccine and diagnostic methods for piglet diarrhea.
Collapse
Affiliation(s)
- Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Wei-Hong Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Wen-Ting Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yu-Qian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Bao-Ying Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Hui-Xin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
2
|
Zhang Y, Si L, Shu X, Qiu C, Wan X, Li H, Ma S, Jin X, Wei Z, Hu H. Gut microbiota contributes to protection against porcine deltacoronavirus infection in piglets by modulating intestinal barrier and microbiome. MICROBIOME 2025; 13:93. [PMID: 40189556 PMCID: PMC11974153 DOI: 10.1186/s40168-025-02092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Gut microbiota plays a critical role in counteracting enteric viral infection. Our previous study demonstrated that infection of porcine deltacoronavirus (PDCoV) disturbs gut microbiota and causes intestinal damage and inflammation in piglets. However, the influence of gut microbiota on PDCoV infection remains unclear. RESULTS Firstly, the relationship between gut microbiota and disease severity of PDCoV infection was evaluated using 8-day-old and 90-day-old pigs. The composition of gut microbiota was significantly altered in 8-day-old piglets after PDCoV infection, leading to severe diarrhea and intestinal damage. In contrast, PDCoV infection barely affected the 90-day-old pigs. Moreover, the diversity (richness and evenness) of microbiota in 90-day-old pigs was much higher compared to the 8-day-old piglets, suggesting the gut microbiota is possibly associated with the severity of PDCoV infection. Subsequently, transplanting the fecal microbiota from the 90-day-old pigs to the 3-day-old piglets alleviated clinical signs of PDCoV infection, modulated the diversity and composition of gut microbiota, and maintained the physical and chemical barrier of intestines. Additionally, metabolomic analysis revealed that the fecal microbiota transplantation (FMT) treatment upregulated the swine intestinal arginine biosynthesis, FMT significantly inhibited the inflammatory response in piglet intestine by modulating the TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS PDCoV infection altered the structure and composition of the gut microbiota in neonatal pigs. FMT treatment mitigated the clinical signs of PDCoV infection in the piglets by modulating the gut microbiota composition and intestinal barrier, downregulating the inflammatory response. The preventive effect of FMT provides novel targets for the development of therapeutics against enteropathogenic coronaviruses. Video Abstract.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Lulu Si
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Congrui Qiu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Xianhua Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Haiyan Li
- College of Sport, Yan'an University, Yanan, 716000, People's Republic of China
| | - Shijie Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou, 450046, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, People's Republic of China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou, 450046, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, People's Republic of China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou, 450046, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, People's Republic of China.
- Longhu Laboratory of Henan Province, Zhengzhou, 450046, People's Republic of China.
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou, 450046, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, People's Republic of China.
- Longhu Laboratory of Henan Province, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Zhu P, Yuan H, Shu X, Li X, Cui Y, Gao L, Yan R, Yu T, Song C, Yao J. Epidemiological Study and Genetic Diversity Assessment of Porcine Epidemic Diarrhea Virus (PEDV) in Yunnan Province, China. Viruses 2025; 17:264. [PMID: 40007019 PMCID: PMC11861340 DOI: 10.3390/v17020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious pathogen responsible for devastating enteric disease and lethal watery diarrhea, leading to significant economic losses in the global swine industry. Understanding the epidemiology and genetic diversity of PEDV over the past decade is crucial for the effective prevention and treatment of porcine epidemic diarrhea. In this study, 1851 fecal samples were collected from pigs exhibiting diarrhea symptoms across 11 cities in Yunnan Province between 2013 and 2022. The prevalence of PEDV, along with other common swine diarrhea viruses, including porcine transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), porcine Sapporo virus (PoSaV), porcine stellate virus (PaStV), and porcine delta coronavirus (PDCoV) was assessed using a polymerase chain reaction (PCR) assay. The results revealed a total detection rate of 52.94% (980/1851) for the six viruses, with PEDV accounting for 25.93% (480/1851) of cases. Further analysis showed that weaned piglets were more susceptible to PEDV than fattening pigs, with the highest prevalence observed in spring (61.52%, 275/447) and the lowest in summer (12.68%, 97/765). Dual infections were also identified, with PEDV + PoSaV being the most common combination (2.81%, 52/1851), followed by PEDV + PoRV, with a detection rate of 1.67% (31/1851). Phylogenetic analysis of the PEDV S genes revealed that the 28 epidemic strains in Yunnan Province shared a nucleotide sequence homology from 91.4% to 98.4% and an amino acid sequence homology ranging from 85.6% to 99.3%. All strains were classified as GII variant strains. This study provides a comprehensive overview of the epidemiology of PEDV and its co-infection patterns with other common diarrhea-causing viruses in the swine herds of Yunnan Province over the past decade. These findings offer valuable insights for the development of effective prevention and control strategies to mitigate the impact of PEDV and other enteroviruses on the swine industry in Yunnan Province.
Collapse
Affiliation(s)
- Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (P.Z.); (L.G.)
| | - Hong Yuan
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China; (H.Y.); (X.S.); (X.L.); (Y.C.); (C.S.)
| | - Xianghua Shu
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China; (H.Y.); (X.S.); (X.L.); (Y.C.); (C.S.)
| | - Xue Li
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China; (H.Y.); (X.S.); (X.L.); (Y.C.); (C.S.)
| | - Yaoxing Cui
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China; (H.Y.); (X.S.); (X.L.); (Y.C.); (C.S.)
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (P.Z.); (L.G.)
| | - Rui Yan
- Menglian County Animal Disease Prevention and Control Center, Menglian 665899, China;
| | - Taoying Yu
- Gongshan County Animal Disease Prevention and Control Center, Gongshan 673599, China;
| | - Chunlian Song
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China; (H.Y.); (X.S.); (X.L.); (Y.C.); (C.S.)
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (P.Z.); (L.G.)
| |
Collapse
|
4
|
Xin Z, Li S, Lu X, Liu L, Gao Y, Hu F, Yu K, Ma X, Li Y, Huang B, Wu J, Guo X. Development and Clinical Application of a Molecular Assay for Four Common Porcine Enteroviruses. Vet Sci 2024; 11:305. [PMID: 39057989 PMCID: PMC11281614 DOI: 10.3390/vetsci11070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four main pathogens that cause viral diarrhea in pigs, and they often occur in mixed infections, which are difficult to distinguish only according to clinical symptoms. Here, we developed a multiplex TaqMan-probe-based real-time RT-PCR method for the simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA for the first time. The specific primers and probes were designed for the M protein gene of PEDV, N protein gene of TGEV, N protein gene of PDCoV, and VP7 protein gene of PoRVA, and corresponding recombinant plasmids were constructed. The method showed extreme specificity, high sensitivity, and excellent repeatability; the limit of detection (LOD) can reach as low as 2.18 × 102 copies/μL in multiplex real-time RT-PCR assay. A total of 97 clinical samples were used to compare the results of the conventional reverse transcription PCR (RT-PCR) and this multiplex real-time RT-PCR for PEDV, TGEV, PDCoV, and PoRVA detection, and the results were 100% consistent. Subsequently, five randomly selected clinical samples that tested positive were sent for DNA sequencing verification, and the sequencing results showed consistency with the detection results of the conventional RT-PCR and our developed method in this study. In summary, this study developed a multiplex real-time RT-PCR method for simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA, and the results of this study can provide technical means for the differential diagnosis and epidemiological investigation of these four porcine viral diarrheic diseases.
Collapse
Affiliation(s)
- Zhonghao Xin
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Shiheng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Xiao Lu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Liping Liu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yuehua Gao
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Feng Hu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Kexiang Yu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Xiuli Ma
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yufeng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Bing Huang
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan 250100, China;
| | - Xiaozhen Guo
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| |
Collapse
|
5
|
Wu Q, Liu X, Wang J, Xu S, Zeng F, Chen L, Zhang G, Wang H. An isothermal nucleic acid amplification-based enzymatic recombinase amplification method for dual detection of porcine epidemic diarrhea virus and porcine rotavirus A. Virology 2024; 594:110062. [PMID: 38522136 DOI: 10.1016/j.virol.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/μL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.
Collapse
Affiliation(s)
- Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Fanliang Zeng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Ling Chen
- Ganzhou Quannan County Agriculture and Rural Bureau, Ganzhou, 341800, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhu H, Wang G, Liu X, Wu W, Yu T, Zhang W, Liu X, Cheng G, Wei L, Ni L, Peng Z, Li X, Xu D, Qian P, Chen P. Establishment and application of a quadruplex real-time RT-qPCR assay for differentiation of TGEV, PEDV, PDCoV, and PoRVA. Microb Pathog 2024; 191:106646. [PMID: 38631414 DOI: 10.1016/j.micpath.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/μL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Collapse
Affiliation(s)
- Hechao Zhu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Geng Wang
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Teng Yu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | | | - Xiangdong Liu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofu Cheng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lumei Ni
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Zhong Peng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dequan Xu
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Ren J, Zu C, Li Y, Li M, Gu J, Chen F, Li X. Establishment and application of a TaqMan-based multiplex real-time PCR for simultaneous detection of three porcine diarrhea viruses. Front Microbiol 2024; 15:1380849. [PMID: 38690365 PMCID: PMC11058560 DOI: 10.3389/fmicb.2024.1380849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Porcine viral diarrhea is a common clinical disease, which results in high mortality and economic losses in the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important diarrhea viruses in pig herds. The similarities of their clinical symptoms and pathological changes make it difficult to distinguish these three viruses clinically. Therefore, there is a need for a highly sensitive and specific method to simultaneously detect and differentiate these viruses. Methods A multiplex real-time PCR assay using TaqMan probes was developed to simultaneously detect PEDV, PoRV, and PDCoV. To assess the efficacy of the established assay, 30 clinical samples with diarrhea symptoms were used to compare the results obtained from the multiplex real-time PCR assay with those obtained from commercial singleplex real-time PCR kit. Importantly, a total of 4,800 diarrhea samples were tested and analyzed to validate the utility of the assay. Results This multiplex real-time PCR assay showed high sensitivity, specificity, and excellent repeatability with a detection limit of 1 × 102 copies/μL. Comparing the results of the commercial singleplex real-time PCR kit and the multiplex real-time PCR method for detecting PEDV, PoRV, and PDCoV, there was complete agreement between the two approaches. Clinical data revealed single infection rates of 6.56% for PEDV, 21.69% for PoRV, and 6.65% for PDCoV. The co-infection rates were 11.83% for PEDV + PoRV, 0.29% for PEDV + PDCoV, 5.71% for PoRV + PDCoV, and 1.29% for PEDV + PDCoV + PoRV, respectively. Discussion The multiplex real-time PCR method established in this study is a valuable diagnostic tool for simultaneously differentiating PEDV, PoRV, and PDCoV. This method is expected to significantly contribute to prevent and control the spread of infectious diseases, as well as aid in conducting epidemiological investigations.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Congcong Zu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Yang Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Meng Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jinyuan Gu
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fengling Chen
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaowen Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| |
Collapse
|
8
|
Zhang Y, Si L, Gao J, Shu X, Qiu C, Zhang Y, Zu S, Hu H. Serial passage of PDCoV in cell culture reduces its pathogenicity and its damage of gut microbiota homeostasis in piglets. mSystems 2024; 9:e0134623. [PMID: 38349151 PMCID: PMC10949489 DOI: 10.1128/msystems.01346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that mainly causes diarrhea in suckling piglets, and also has the potential for cross-species transmission. However, there are still no commercial vaccines available to prevent and control PDCoV infection. In this study, PDCoV strain HNZK-02 was serially propagated in vitro for up to 150 passages and the amino acid changes have mainly occurred in the S protein during serial passage which caused structure change. PDCoV HNZK-02-passage 5 (P5)-infected piglets exhibited acute and severe watery diarrhea, an obvious intestinal damage, while the piglets infected with PDCoV HNZK-02-P150 showed no obvious clinical signs, weak intestinal lesions, and lower viral loads in rectal swabs and various tissues. Compared with the PDCoV HNZK-02-P5 infection, HNZK-02-P150 infection resulted in a decrease in intestinal mucosal permeability and pro-inflammatory cytokines. Moreover, PDCoV HNZK-02-P5 infection had significantly reduced bacterial diversity and increased relative abundance of opportunistic pathogens, while PDCoV HNZK-02-P150 infection did not significantly affect the bacterial diversity, and the relative abundance of probiotics increased. Furthermore, the alterations of gut microbiota were closely related to the change of pro-inflammatory factor. Metagenomics prediction analysis demonstrated that HNZK-02-P150 modulated the tyrosine metabolism, Nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and lipopolysaccharide biosynthesis, which coincided with lower inflammatory response and intestinal permeability in the piglets infected with HNZK-02-P150. In conclusion, the PDCoV HNZK-02 was successfully attenuated by serial passage in vitro, and the changes of S gene, metabolic function, and gut microbiota may contribute to the attenuation. The PDCoV HNZK-02-P150 may have the potential for developing live-attenuated vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is an enteropathogen causing severe diarrhea, dehydration, and death in nursing piglets, devastating great economic losses for the global swine industry, and has cross-species transmission and zoonotic potential. There are currently no approved treatments or vaccines available for PDCoV. In addition, gut microbiota has an important relationship with the development of many diseases. Here, the PDCoV virulent HNZK-02 strain was successfully attenuated by serial passage on cell cultures, and the pathogenesis and effects on the gut microbiota composition and metabolic function of the PDCoV HNZK-02-P5 and P150 strains were investigated in piglets. We also found the genetic changes in the S protein during passage in vitro and the gut microbiota may contribute to the pathogenesis of PDCoV, while their interaction molecular mechanism would need to be explored further.
Collapse
Affiliation(s)
- Yunfei Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lulu Si
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junlong Gao
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangli Shu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Congrui Qiu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Shaopo Zu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Hui Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Yu R, Zhang L, Zhou P, Zhang Z, Liu X, Wang Y, Guo H, Pan L, Liu X. Evaluation of the immunoprotective effects of porcine deltacoronavirus subunit vaccines. Virology 2024; 590:109955. [PMID: 38070302 DOI: 10.1016/j.virol.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Porcine deltacoronavirus (PDCoV), a new porcine enteric coronavirus, has seriously endangered the pig breeding industry and caused great economic losses. However, a PDCoV vaccine is not commercially available. Therefore, new and efficient PDCoV vaccines must be developed without delay. In this study, we used the ExpiCHO eukaryotic expression system to express and purify the following 3 structural proteins of PDCoV: S, N and M. Subsequently, the level of humoral and cellular immunity induced by the S protein (immunization with the S protein alone) and a protein mixture (immunization with a mixture of S, N and M proteins) were evaluated in mice and piglets, respectively, and the performances of the 2 immunizations in a challenge protection test were assessed in piglets. The results showed that both the S protein and the protein mixture induced the production of high levels of specific IgG antibodies and neutralizing antibodies and effectively neutralized PDCoV-infected LLC-PK cells in vitro. Furthermore, compared with the S protein, the N and M proteins in the protein mixture promoted the expression of CD8+ T cells and IFN-γ, induced a stronger cellular immune response, and effectively protected 4/5 of the piglets from PDCoV infection. In conclusion, the results of this study showed that the N and M proteins play important roles in inducing an immunoprotective response. Using N and M antigens as effective antigenic components in the development of PDCoV vaccines in the future will effectively increase the immune efficacy of the vaccines.
Collapse
Affiliation(s)
- Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| |
Collapse
|
10
|
Li Z, Wu X, Zhang Y, Li Q, Gao J, Hu Y, Yuan J, Hu H, Jin X, Wei Z. Isolation and Pathogenicity of a Chinese Porcine Astrovirus Type 5 Strain HNPDS-01 and Its Influence on Cecum Microbiota in Piglets. Transbound Emerg Dis 2024; 2024:5777097. [PMID: 40303176 PMCID: PMC12016781 DOI: 10.1155/2024/5777097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 05/02/2025]
Abstract
Astroviruses have frequently been found in mammals and poultry, but only a few have been successfully isolated for extensive research. Here, we isolated a strain of porcine astrovirus type 5 (PAstV 5) on LLC-porcine kidney (LLC-PK) cells, from the intestinal contents of diarrhea piglets, namely PAstV 5-HNPDS-01. The complete genome sequence length of this strain was 6,419 nt, which has 77.2%-91.1% nucleotide homology with other PAstV 5 strains and 45.0%-50.0% nucleotide homology with other mammalian astroviruses. The recombination analysis indicated that the recombination events were occurred in ORF 2 region (4,444-5,323 nt) in PAstV 5-HNPDS-01 strain. Subsequently, the pathogenicity of PAstV 5-HNPDS-01 was evaluated in 5-day-old piglets. It showed that the PAstV 5-HNPDS-01 could cause mild diarrhea, growth retardation, minor damage to intestinal villi clinically. Meanwhile, PAstV 5-HNPDS-01 infection could affect the microbiota diversity and composition of cecum in piglet from phylum to genus level. After infected with PAstV 5, there was a significant downregulation of beneficial bacteria, including Faecalibacterium, Bacteroides, Lactobacillus, and Prevotella, while harmful bacteria such as Subdoligranulun showed a significant upregulation. These results provided a research basis for pathogenic mechanisms, vaccine development, and beneficial symbiotic bacteria development for PAstV 5 infection.
Collapse
Affiliation(s)
- Zehui Li
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xingyi Wu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunfei Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qianqian Li
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Junlong Gao
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yixin Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jin Yuan
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
| | - Hui Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, Henan, China
| | - Xiaohui Jin
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, Henan, China
| |
Collapse
|
11
|
Hou W, Fan M, Zhu Z, Li X. Establishment and Application of a Triplex Real-Time RT-PCR Assay for Differentiation of PEDV, PoRV, and PDCoV. Viruses 2023; 15:1238. [PMID: 37376539 DOI: 10.3390/v15061238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine viral diarrhea is very common in clinical practice and has caused huge losses to the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important pathogens of porcine viral diarrhea. Co-infection situations among these three viruses in clinics are common, which increases the difficulty of differential diagnosis. Currently, polymerase chain reaction (PCR) is commonly used to detect pathogens. TaqMan real-time PCR is more sensitive than conventional PCR and has better specificity and accuracy. In this study, a triplex real-time RT-PCR assay based on TaqMan probes was developed for differential detection of PEDV, PoRV, and PDCoV. The triplex real-time RT-PCR assay developed in this study could not detect unrelated pathogens and showed satisfactory specificity, sensitivity, repeatability, and reproducibility with a limit of detection (LOD) of 6.0 × 101 copies/μL. Sixteen clinical samples were used to compare the results of the commercial RT-PCR kit and the triplex RT-PCR for PEDV, PoRV, and PDCoV detection, and the results were completely consistent. A total of 112 piglet diarrhea samples collected from Jiangsu province were next used to study the local prevalence of PEDV, PoRV, and PDCoV. The positive rates of PEDV, PoRV, and PDCoV detected by the triplex real-time RT-PCR were 51.79% (58/112), 59.82% (67/112), and 2.68% (3/112), respectively. The co-infections of PEDV and PoRV were frequent (26/112, 23.21%), followed by the co-infections of PDCoV and PoRV (2/112, 1.79%). This study established a useful tool for simultaneous differentiation of PEDV, PoRV, and PDCoV in practice and provided valuable information on the prevalence of these diarrhea viral pathogens in Jiangsu province.
Collapse
Affiliation(s)
- Wenwen Hou
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Maodi Fan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843399, China
| |
Collapse
|