1
|
Vater C, Mann DL. Are predictive saccades linked to the processing of peripheral information? PSYCHOLOGICAL RESEARCH 2022; 87:1501-1519. [PMID: 36167931 DOI: 10.1007/s00426-022-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
High-level athletes can predict the actions of an opposing player. Interestingly, such predictions are also reflected by the athlete's gaze behavior. In cricket, for example, players first pursue the ball with their eyes before they very often initiate two predictive saccades: one to the predicted ball-bounce point and a second to the predicted ball-bat-contact point. That means, they move their eyes ahead of the ball and "wait" for the ball at the new fixation location, potentially using their peripheral vision to update information about the ball's trajectory. In this study, we investigated whether predictive saccades are linked to the processing of information in peripheral vision and if predictive saccades are superior to continuously following the ball with foveal vision using smooth-pursuit eye-movements (SPEMs). In the first two experiments, we evoked the typical eye-movements observed in cricket and showed that the information gathered during SPEMs is sufficient to predict when the moving object will hit the target location and that (additional) peripheral monitoring of the object does not help to improve performance. In a third experiment, we show that it could actually be beneficial to use SPEMs rather than predictive saccades to improve performance. Thus, predictive saccades ahead of a target are unlikely to be performed to enhance the peripheral monitoring of target.
Collapse
Affiliation(s)
- Christian Vater
- Institute of Sport Science, University of Bern, Bremgartenstrasse 145, 3012, Bern, Switzerland.
| | - David L Mann
- Faculty of Behavioural and Movement Sciences, Motor Learning and Performance, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
The role of eye movements in perceiving vehicle speed and time-to-arrival at the roadside. Sci Rep 2021; 11:23312. [PMID: 34857779 PMCID: PMC8640052 DOI: 10.1038/s41598-021-02412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/09/2021] [Indexed: 11/12/2022] Open
Abstract
To avoid collisions, pedestrians depend on their ability to perceive and interpret the visual motion of other road users. Eye movements influence motion perception, yet pedestrians' gaze behavior has been little investigated. In the present study, we ask whether observers sample visual information differently when making two types of judgements based on the same virtual road-crossing scenario and to which extent spontaneous gaze behavior affects those judgements. Participants performed in succession a speed and a time-to-arrival two-interval discrimination task on the same simple traffic scenario-a car approaching at a constant speed (varying from 10 to 90 km/h) on a single-lane road. On average, observers were able to discriminate vehicle speeds of around 18 km/h and times-to-arrival of 0.7 s. In both tasks, observers placed their gaze closely towards the center of the vehicle's front plane while pursuing the vehicle. Other areas of the visual scene were sampled infrequently. No differences were found in the average gaze behavior between the two tasks and a pattern classifier (Support Vector Machine), trained on trial-level gaze patterns, failed to reliably classify the task from the spontaneous eye movements it elicited. Saccadic gaze behavior could predict time-to-arrival discrimination performance, demonstrating the relevance of gaze behavior for perceptual sensitivity in road-crossing.
Collapse
|
3
|
Vater C, Klostermann A, Kredel R, Hossner EJ. Detecting motion changes with peripheral vision: On the superiority of fixating over smooth-pursuit tracking. Vision Res 2020; 171:46-52. [PMID: 32371226 DOI: 10.1016/j.visres.2020.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023]
Abstract
Detecting motion changes is a fundamental prerequisite for solving tasks in sports and in everyday life. It is known that peripheral vision is used to detect these changes and that saccades impair detection performance. However, comparatively little is known about the role of smooth-pursuit eye-movements (SPEMs) during these tasks. Therefore, we compared peripheral motion-change detection during SPEM and fixation at eccentricities up to 18°, simulating the perceptual demands of real-life situations. Based on expert gaze behavior in sports, we predicted that motion detection should be better during fixation than SPEM. In a series of three experiments, we consistently found that detection rates and response times were impaired during SPEM compared to fixation, particularly at 18° eccentricity. With an invisible pursuit object and targets moving ahead rather than behind the pursued object, performance differences in response times declined, whereas differences in detection rates interestingly remained unmoved. We argue that retinal image motion and attentional demands are reasons for SPEM impairments.
Collapse
Affiliation(s)
- Christian Vater
- Institute of Sport Science, University of Bern, Bern, Switzerland.
| | | | - Ralf Kredel
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | | |
Collapse
|
4
|
The reference frame for encoding and retention of motion depends on stimulus set size. Atten Percept Psychophys 2017; 79:888-910. [PMID: 28092077 DOI: 10.3758/s13414-016-1258-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
Collapse
|
5
|
Ross NM, Goettker A, Schütz AC, Braun DI, Gegenfurtner KR. Discrimination of curvature from motion during smooth pursuit eye movements and fixation. J Neurophysiol 2017; 118:1762-1774. [PMID: 28659462 DOI: 10.1152/jn.00324.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination.NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found in perceptual discrimination of curvature.
Collapse
Affiliation(s)
- Nicholas M Ross
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany; and
| | - Alexander Goettker
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany; and
| | - Alexander C Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Doris I Braun
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany; and
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany; and
| |
Collapse
|
6
|
Mueller AS, González EG, McNorgan C, Steinbach MJ, Timney B. Aperture extent and stimulus speed affect the perception of visual acceleration. Exp Brain Res 2016; 235:743-752. [PMID: 27866263 DOI: 10.1007/s00221-016-4824-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
Humans are generally poor at detecting the presence of visual acceleration, but it is unclear whether the extent of a field of moving objects through an aperture affects this ability. Hypothetically, the farther a stimulus can accelerate uninterrupted by an aperture's physical constraints, the easier it should be to discern its motion profile. We varied the horizontal extent of the aperture through which continuously accelerating or decelerating random dot arrays were presented at different average speeds, and measured acceleration and deceleration detection thresholds. We also hypothesized that manipulating aperture extent at different speeds would change how observers visually pursue acceleration, which we tested in a control experiment. Results showed that, while there was no difference between the acceleration and deceleration conditions, detection was better in the larger than small aperture conditions. Regardless of aperture size, smaller acceleration and deceleration rates (relative to average speed) were needed to detect changing speed in faster than slower speed ranges. Similarly, observers tracked the stimuli to a greater extent in the larger than small apertures, and smooth pursuit was overall poorer at faster than slower speeds. Notably, the effect of speed on pursuit was greater for the larger than small aperture conditions, suggesting that the small aperture restricted pursuit. Furthermore, there was little difference in psychophysical and eye movement data between the medium and large aperture conditions within each speed range, indicating that it is easier to detect an accelerating profile when the aperture is large enough to encourage a minimum level of pursuit.
Collapse
Affiliation(s)
- Alexandra S Mueller
- Psychology Department, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Center for ADHD, Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., ML-10006, Cincinnati, OH, 45229-3039, USA.
| | - Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, M5T 2S8, Canada.,Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Chris McNorgan
- Psychology Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260-4110, USA
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, M5T 2S8, Canada.,Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Brian Timney
- Psychology Department, University of Western Ontario, London, ON, N6A 5C2, Canada
| |
Collapse
|
7
|
Mueller AS, Timney B. Visual Acceleration Perception for Simple and Complex Motion Patterns. PLoS One 2016; 11:e0149413. [PMID: 26901879 PMCID: PMC4763975 DOI: 10.1371/journal.pone.0149413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/01/2016] [Indexed: 12/03/2022] Open
Abstract
Humans are able to judge whether a target is accelerating in many viewing contexts, but it is an open question how the motion pattern per se affects visual acceleration perception. We measured acceleration and deceleration detection using patterns of random dots with horizontal (simpler) or radial motion (more visually complex). The results suggest that we detect acceleration better when viewing radial optic flow than horizontal translation. However, the direction within each type of pattern has no effect on performance and observers detect acceleration and deceleration similarly within each condition. We conclude that sensitivity to the presence of acceleration is generally higher for more complex patterns, regardless of the direction within each type of pattern or the sign of acceleration.
Collapse
Affiliation(s)
- Alexandra S. Mueller
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Brian Timney
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Mueller AS, González EG, McNorgan C, Steinbach MJ, Timney B. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration. Perception 2016; 45:670-683. [PMID: 26854286 DOI: 10.1177/0301006616629034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus.
Collapse
Affiliation(s)
- Alexandra S Mueller
- Psychology Department, University of Western Ontario, London, Ontario, Canada
| | - Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Centre for Vision Research, York University, Toronto, Canada
| | - Chris McNorgan
- Psychology Department, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Centre for Vision Research, York University, Toronto, Canada
| | - Brian Timney
- Psychology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
|