1
|
Levy S, Katz Sand IB, Berkman O, Raveh E, Ben-Ami E, Kreitman R, Sumowski JF. Correlations Between Oculometric Measures and Traditional Clinical Assessments in Multiple Sclerosis. Mult Scler Relat Disord 2025; 94:106265. [PMID: 39827539 DOI: 10.1016/j.msard.2025.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/18/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Oculomotor abnormalities are common in multiple sclerosis (MS) but are not quantitatively evaluated in clinical practice. Oculometric measures (OMs) are characteristics of eye movements captured while performing a visual task, e.g., the latency of saccadic and anti-saccadic metrics. Physical and cognitive deficits are prevalent among persons with MS, including disease-related oculomotor dysfunction. Recently, we have implemented a novel software-based platform enabling the extraction of OMs using a PC and a webcam. OBJECTIVE The objective of this study is to investigate the relationships between OMs and traditional outcome measures of physical and cognitive dysfunction in MS. METHODS Oculometric evaluation using a novel software-based platform (NeuraLight, Israel) was performed in patients with relapsing-remitting MS (n = 57; 36 females, age 41.4 ± 8.6). Physical disability was assessed by an MS-specific neurologic exam (Expanded Disability Status Scale; EDSS) and quantitative measures of cognitive and sensorimotor function (Symbol Digit Modalities Test; SDMT and Nine Hole Peg Test; NHPT). Various OMs were calculated out of multiple measures: Saccadic latency, gain and gaze during fixation, as well as error rate of saccades. Spearman's rank correlation was computed for each OM to assess the relationship with clinical scores. RESULTS Various OMs were correlated with EDSS scores, as pro- and anti-saccadic latency (OM1 r = 0.36, OM2 r = 0.50, OM3 r = 0.39, OM4 r = 0.49; P-values<0.0001), initial gain during saccades (OM6 r = 0.47, OM7 r = 0.30, OM8 r = 0.59; p < 0.0001), stability of gaze during fixation (OM9 r = 0.48, OM10 r = 0.41; p < 0.0001) and error rate of anti-saccades (OM11 r = 0.59; p < 0.0001). Similar correlations were found between these OMs and NHPT scores (OM1 r = 0.41, OM2 r = 0.46, OM3 r = 0.31, OM4 r = 0.50; P-values<0.0001), initial gain (OM6 r = 0.40, OM7 r = 0.39, OM8 r = 0.58; Ps<0.0001) and error rate (OM11 r = 0.36; p < 0.0001). Finally, OMs were correlated with SDMT scores: OM1 and OM2 r=-0.31, OM3 r=-0.26, SD r=-0.38; p < 0.05), OM7 r=-0.36, OM8 r=-0.45; Ps<0.0001) and fixation stability (OM9 r=-0.36, Om10 r=-0.45; p < 0.05). CONCLUSIONS OMs captured using a novel software-based platform were found to be associated with physical and cognitive function, suggesting that they can be used as a relevant tool in MS clinical assessment. Further studies will include larger cohorts and assess participants longitudinally to determine the potential value of OMs as predictors of future MS-related disability.
Collapse
Affiliation(s)
- S Levy
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - I B Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - E Raveh
- NeuraLight LTD, Tel Aviv, Israel
| | | | | | - J F Sumowski
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Zuroff LR, Green AJ. The Study of Remyelinating Therapies in Multiple Sclerosis: Visual Outcomes as a Window Into Repair. J Neuroophthalmol 2024; 44:143-156. [PMID: 38654413 DOI: 10.1097/wno.0000000000002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Amelioration of disability in multiple sclerosis requires the development of complementary therapies that target neurodegeneration and promote repair. Remyelination is a promising neuroprotective strategy that may protect axons from damage and subsequent neurodegeneration. METHODS A review of key literature plus additional targeted search of PubMed and Google Scholar was conducted. RESULTS There has been a rapid expansion of clinical trials studying putative remyelinating candidates, but further growth of the field is limited by the lack of consensus on key aspects of trial design. We have not yet defined the ideal study population, duration of therapy, or the appropriate outcome measures to detect remyelination in humans. The varied natural history of multiple sclerosis, coupled with the short time frame of phase II clinical trials, requires that we develop and validate biomarkers of remyelination that can serve as surrogate endpoints in clinical trials. CONCLUSIONS We propose that the visual system may be the most well-suited and validated model for the study potential remyelinating agents. In this review, we discuss the pathophysiology of demyelination and summarize the current clinical trial landscape of remyelinating agents. We present some of the challenges in the study of remyelinating agents and discuss current potential biomarkers of remyelination and repair, emphasizing both established and emerging visual outcome measures.
Collapse
Affiliation(s)
- Leah R Zuroff
- Department of Neurology (LZ), Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Neurology (AJG), University of California San Francisco, San Francisco, California
| | | |
Collapse
|
3
|
Gerardo F, Bárbara E, Cecilia G, Aldana M, Natalia C, Lucia B, Silva B, Leila C, Cecilia P, Orlando G, Magdalena C, Luciana L, Gabriel P, Ricardo A. Abnormal eye movements increase as motor disabilities and cognitive impairments become more evident in Multiple Sclerosis: A novel eye-tracking study. Mult Scler J Exp Transl Clin 2024; 10:20552173241255008. [PMID: 38817553 PMCID: PMC11138185 DOI: 10.1177/20552173241255008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background Eye movements can reflect brain alterations and inform on the presence of motor disabilities and cognitive impairments in people with multiple sclerosis (pwMS). Objective The aim of the study was to determine the correlation between motor and cognitive measurements and eye movement parameters when performing the n-back task (NBKT). Methods This was a cross-sectional study carried out at Ramos Mejía Hospital, a center specialized in demyelinating diseases in Buenos Aires, Argentina. The study population consisted of 66 patients with relapsing-remitting multiple sclerosis (RRMS) and 5 patients with secondary progressive multiple sclerosis (SPMS). pwMS performed the n-back test while using a device head mounted display (HMD) with eyetracking capabilities in order to capture eye movement. Clinical motor and cognitive measures were assessed with Expanded Disability Status Scale (EDSS), Nine Hole Peg Test (NHPT), Timed 25-Foot Walk (T25FW), and Symbol Digit Modalities Test (SDMT). Results pwMS showed strong and statistically significant correlations between gaze duration; number of fixations, saccade amplitude and motor disabilities and cognitive impairments as measured by EDSS, NHPT, T25FW, and SDMT. Conclusion This study found significant correlations between eye movement behavior and motor and cognitive disability in pwMS. These findings suggest that eye movements have the potential to be used as a surrogate biomarker in MS progression.
Collapse
Affiliation(s)
| | - Eizaguirre Bárbara
- Multiple Sclerosis University Center CUEM, Ramos Mejia Hospital, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | - Lazaro Luciana
- Centro Universitario de Esclerosis Múltiple y enfermedades desmielinizantes (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Pardo Gabriel
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Alonso Ricardo
- Multiple Sclerosis University Center CUEM, Ramos Mejia Hospital, Buenos Aires, Argentina
| |
Collapse
|
4
|
Riboni-Verri G, Chen BS, McMurran CE, Halliwell GJ, Brown JWL, Coles AJ, Cunniffe NG. Visual outcome measures in clinical trials of remyelinating drugs. BMJ Neurol Open 2024; 6:e000560. [PMID: 38389586 PMCID: PMC10882304 DOI: 10.1136/bmjno-2023-000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
One of the most promising approaches to delay, prevent or reverse disability progression in multiple sclerosis (MS) is to enhance endogenous remyelination and limit axonal degeneration. In clinical trials of remyelinating drugs, there is a need for reliable, sensitive and clinically relevant outcome measures. The visual pathway, which is frequently affected by MS, provides a unique model system to evaluate remyelination of acute and chronic MS lesions in vivo and non-invasively. In this review, we discuss the different measures that have been used and scrutinise visual outcome measure selection in current and future remyelination trials.
Collapse
Affiliation(s)
- Gioia Riboni-Verri
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Benson S Chen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory J Halliwell
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Clinical Outcomes Research Unit (CORe), University of Melbourne, Melborune, Melborune, Australia
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Nick G Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Wang M, Liu C, Zou M, Niu Z, Zhu J, Jin T. Recent progress in epidemiology, clinical features, and therapy of multiple sclerosis in China. Ther Adv Neurol Disord 2023; 16:17562864231193816. [PMID: 37719665 PMCID: PMC10504852 DOI: 10.1177/17562864231193816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by inflammation, demyelination, and neurodegeneration. It mainly affects young adults, imposing a heavy burden on families and society. The epidemiology, clinical features, and management of MS are distinct among different countries. Although MS is a rare disease in China, there are 1.4 billion people in China, so the total number of MS patients is not small. Because of the lack of specific diagnostic biomarkers for MS, there is a high misdiagnosis rate in China, as in other regions. Due to different genetic backgrounds, the clinical manifestations of MS in Chinese are different from those in the West. Herein, this review aims to summarize the disease comprehensively, including clinical profile and the status of disease-modifying therapies in China based on published population-based observation and cohort studies, and also to compare with data from other countries and regions, thus providing help to develop diagnostic guideline and the novel therapeutic drugs. Meanwhile, we also discuss the problems and challenges we face, specifically for the diagnosis and treatment of MS in the middle- and low-income countries.
Collapse
Affiliation(s)
- Meng Wang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Niu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 171 64, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
| |
Collapse
|
6
|
de Villers-Sidani É, Voss P, Bastien N, Cisneros-Franco JM, Hussein S, Mayo NE, Koch NA, Drouin-Picaro A, Blanchette F, Guitton D, Giacomini PS. Oculomotor analysis to assess brain health: preliminary findings from a longitudinal study of multiple sclerosis using novel tablet-based eye-tracking software. Front Neurol 2023; 14:1243594. [PMID: 37745656 PMCID: PMC10516298 DOI: 10.3389/fneur.2023.1243594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
A growing body of evidence supports the link between eye movement anomalies and brain health. Indeed, the oculomotor system is composed of a diverse network of cortical and subcortical structures and circuits that are susceptible to a variety of degenerative processes. Here we show preliminary findings from the baseline measurements of an ongoing longitudinal cohort study in MS participants, designed to determine if disease and cognitive status can be estimated and tracked with high accuracy based on eye movement parameters alone. Using a novel gaze-tracking technology that can reliably and accurately track eye movements with good precision without the need for infrared cameras, using only an iPad Pro embedded camera, we show in this cross-sectional study that several eye movement parameters significantly correlated with clinical outcome measures of interest. Eye movement parameters were extracted from fixation, pro-saccade, anti-saccade, and smooth pursuit visual tasks, whereas the clinical outcome measures were the scores of several disease assessment tools and standard cognitive tests such as the Expanded Disability Status Scale (EDSS), Brief International Cognitive Assessment for MS (BICAMS), the Multiple Sclerosis Functional Composite (MSFC) and the Symbol Digit Modalities Test (SDMT). Furthermore, partial least squares regression analyses show that a small set of oculomotor parameters can explain up to 84% of the variance of the clinical outcome measures. Taken together, these findings not only replicate previously known associations between eye movement parameters and clinical scores, this time using a novel mobile-based technology, but also the notion that interrogating the oculomotor system with a novel eye-tracking technology can inform us of disease severity, as well as the cognitive status of MS participants.
Collapse
Affiliation(s)
- Étienne de Villers-Sidani
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - J. Miguel Cisneros-Franco
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Nancy E. Mayo
- Faculty of Medicine, School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Nils A. Koch
- Innodem Neurosciences, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | | | - Daniel Guitton
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Paul S. Giacomini
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Nij Bijvank JA, Hof SN, Prouskas SE, Schoonheim MM, Uitdehaag BMJ, van Rijn LJ, Petzold A. A novel eye-movement impairment in multiple sclerosis indicating widespread cortical damage. Brain 2023; 146:2476-2488. [PMID: 36535900 PMCID: PMC10232247 DOI: 10.1093/brain/awac474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/04/2023] Open
Abstract
In multiple sclerosis, remyelination trials have yet to deliver success like that achieved for relapse rates with disease course modifying treatment trials. The challenge is to have a clinical, functional outcome measure. Currently, there are none that have been validated, other than visual evoked potentials in optic neuritis. Like vision, quick eye movements (saccades) are heavily dependent on myelination. We proposed that it is possible to extrapolate from demyelination of the medial longitudinal fasciculus in the brainstem to quantitative assessment of cortical networks governing saccadic eye movements in multiple sclerosis. We have developed and validated a double-step saccadic test, which consists of a pair of eye movements towards two stimuli presented in quick succession (the demonstrate eye movement networks with saccades protocol). In this single-centre, cross-sectional cohort study we interrogated the structural and functional relationships of double-step saccades in multiple sclerosis. Data were collected for double-step saccades, cognitive function (extended Rao's Brief Repeatable Battery), disability (Expanded Disability Status Scale) and visual functioning in daily life (National Eye Institute Visual Function Questionnaire). MRI was used to quantify grey matter atrophy and multiple sclerosis lesion load. Multivariable linear regression models were used for analysis of the relationships between double-step saccades and clinical and MRI metrics. We included 209 individuals with multiple sclerosis (mean age 54.3 ± 10.5 years, 58% female, 63% relapsing-remitting multiple sclerosis) and 60 healthy control subjects (mean age 52.1 ± 9.2 years, 53% female). The proportion of correct double-step saccades was significantly reduced in multiple sclerosis (mean 0.29 ± 0.22) compared to controls (0.45 ± 0.22, P < 0.001). Consistent with this, there was a significantly larger double-step dysmetric saccadic error in multiple sclerosis (mean vertical error -1.18 ± 1.20°) compared to controls (-0.54 ± 0.86°, P < 0.001). Impaired double-step saccadic metrics were consistently associated with more severe global and local grey matter atrophy (correct responses-cortical grey matter: β = 0.42, P < 0.001), lesion load (vertical error: β = -0.28, P < 0.001), progressive phenotypes, more severe physical and cognitive impairment (correct responses-information processing: β = 0.46, P < 0.001) and visual functioning. In conclusion, double-step saccades represent a robust metric that revealed a novel eye-movement impairment in individuals with multiple sclerosis. Double-step saccades outperformed other saccadic tasks in their statistical relationship with clinical, cognitive and visual functioning, as well as global and local grey matter atrophy. Double-step saccades should be evaluated longitudinally and tested as a potential novel outcome measure for remyelination trials in multiple sclerosis.
Collapse
Affiliation(s)
- Jenny A Nij Bijvank
- Amsterdam UMC, Department of Neurology, Vrije Universiteit Amsterdam, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
- Amsterdam UMC, Department of Ophthalmology, Vrije Universiteit Amsterdam, Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
| | - Sam N Hof
- Amsterdam UMC, Department of Neurology, Vrije Universiteit Amsterdam, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
| | - Stefanos E Prouskas
- Amsterdam UMC, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, MS Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Amsterdam UMC, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, MS Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
| | - Bernard M J Uitdehaag
- Amsterdam UMC, Department of Neurology, Vrije Universiteit Amsterdam, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
| | - Laurentius J van Rijn
- Amsterdam UMC, Department of Ophthalmology, Vrije Universiteit Amsterdam, Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, 1091 AC Amsterdam, The Netherlands
| | - Axel Petzold
- Amsterdam UMC, Department of Neurology, Vrije Universiteit Amsterdam, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
- Amsterdam UMC, Department of Ophthalmology, Vrije Universiteit Amsterdam, Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, The Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London EC1V 2PD, UK
| |
Collapse
|
8
|
McDonald MA, Stevenson CH, Kersten HM, Danesh-Meyer HV. Eye Movement Abnormalities in Glaucoma Patients: A Review. Eye Brain 2022; 14:83-114. [PMID: 36105571 PMCID: PMC9467299 DOI: 10.2147/eb.s361946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is a common condition that relies on careful clinical assessment to diagnose and determine disease progression. There is growing evidence that glaucoma is associated not only with loss of retinal ganglion cells but also with degeneration of cortical and subcortical brain structures associated with vision and eye movements. The effect of glaucoma pathophysiology on eye movements is not well understood. In this review, we examine the evidence surrounding altered eye movements in glaucoma patients compared to healthy controls, with a focus on quantitative eye tracking studies measuring saccades, fixation, and optokinetic nystagmus in a range of visual tasks. The evidence suggests that glaucoma patients have alterations in several eye movement domains. Patients exhibit longer saccade latencies, which worsen with increasing glaucoma severity. Other saccadic abnormalities include lower saccade amplitude and velocity, and difficulty inhibiting reflexive saccades. Fixation is pathologically altered in glaucoma with reduced stability. Optokinetic nystagmus measures have also been shown to be abnormal. Complex visual tasks (eg reading, driving, and navigating obstacles), integrate these eye movements and result in behavioral adaptations. The review concludes with a summary of the evidence and recommendations for future research in this emerging field.
Collapse
Affiliation(s)
- Matthew A McDonald
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Clark H Stevenson
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Hannah M Kersten
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,Eye Institute, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Eye Institute, Auckland, New Zealand
| |
Collapse
|
9
|
Kullmann A, Ashmore RC, Braverman A, Mazur C, Snapp H, Williams E, Szczupak M, Murphy S, Marshall K, Crawford J, Balaban CD, Hoffer M, Kiderman A. Portable eye-tracking as a reliable assessment of oculomotor, cognitive and reaction time function: Normative data for 18-45 year old. PLoS One 2021; 16:e0260351. [PMID: 34807938 PMCID: PMC8608311 DOI: 10.1371/journal.pone.0260351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023] Open
Abstract
Eye movements measured by high precision eye-tracking technology represent a sensitive, objective, and non-invasive method to probe functional neural pathways. Oculomotor tests (e.g., saccades and smooth pursuit), tests that involve cognitive processing (e.g., antisaccade and predictive saccade), and reaction time tests have increasingly been showing utility in the diagnosis and monitoring of mild traumatic brain injury (mTBI) in research settings. Currently, the adoption of these tests into clinical practice is hampered by a lack of a normative data set. The goal of this study was to construct a normative database to be used as a reference for comparing patients' results. Oculomotor, cognitive, and reaction time tests were administered to male and female volunteers, aged 18-45, who were free of any neurological, vestibular disorders, or other head injuries. Tests were delivered using either a rotatory chair equipped with video-oculography goggles (VOG) or a portable virtual reality-like VOG goggle device with incorporated infrared eye-tracking technology. Statistical analysis revealed no effects of age on test metrics when participant data were divided into pediatric (i.e.,18-21 years, following FDA criteria) and adult (i.e., 21-45 years) groups. Gender (self-reported) had an effect on auditory reaction time, with males being faster than females. Pooled data were used to construct a normative database using 95% reference intervals (RI) with 90% confidence intervals on the upper and lower limits of the RI. The availability of these RIs readily allows clinicians to identify specific metrics that are deficient, therefore aiding in rapid triage, informing and monitoring treatment and/or rehabilitation protocols, and aiding in the return to duty/activity decision. This database is FDA cleared for use in clinical practice (K192186).
Collapse
Affiliation(s)
- Aura Kullmann
- Neurolign USA LLC, a Subsidiary of Neurolign Technologies Inc. (formerly Neuro Kinetics, Inc.), Pittsburgh, Pennsylvania, United States of America
| | - Robin C. Ashmore
- Neurolign USA LLC, a Subsidiary of Neurolign Technologies Inc. (formerly Neuro Kinetics, Inc.), Pittsburgh, Pennsylvania, United States of America
| | - Alexandr Braverman
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christian Mazur
- Neurolign USA LLC, a Subsidiary of Neurolign Technologies Inc. (formerly Neuro Kinetics, Inc.), Pittsburgh, Pennsylvania, United States of America
| | - Hillary Snapp
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Erin Williams
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mikhaylo Szczupak
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Sara Murphy
- Naval Medical Center, San Diego, California, United States of America
- Department of Defense, Hearing Center of Excellence, San Antonio, Texas, United States of America
| | - Kathryn Marshall
- Department of Defense, Hearing Center of Excellence, San Antonio, Texas, United States of America
- Madigan Army Medical Center, Tacoma, Washington, United States of America
| | - James Crawford
- Madigan Army Medical Center, Tacoma, Washington, United States of America
| | - Carey D. Balaban
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Hoffer
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alexander Kiderman
- Neurolign USA LLC, a Subsidiary of Neurolign Technologies Inc. (formerly Neuro Kinetics, Inc.), Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Nij Bijvank JA, Strijbis EMM, Nauta IM, Kulik SD, Balk LJ, Stam CJ, Hillebrand A, Geurts JJG, Uitdehaag BMJ, van Rijn LJ, Petzold A, Schoonheim MM. Impaired saccadic eye movements in multiple sclerosis are related to altered functional connectivity of the oculomotor brain network. Neuroimage Clin 2021; 32:102848. [PMID: 34624635 PMCID: PMC8503580 DOI: 10.1016/j.nicl.2021.102848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Impaired eye movements in multiple sclerosis (MS) and functional connectivity (FC) Eye movements related to altered FC of the oculomotor brain network. Lower (beta band) and higher (theta/delta band) FC related to abnormal eye movements. Regional changes were more informative than whole-network measures. Eye movement parameters also related to disability and cognitive dysfunction.
Background Impaired eye movements in multiple sclerosis (MS) are common and could represent a non-invasive and accurate measure of (dys)functioning of interconnected areas within the complex brain network. The aim of this study was to test whether altered saccadic eye movements are related to changes in functional connectivity (FC) in patients with MS. Methods Cross-sectional eye movement (pro-saccades and anti-saccades) and magnetoencephalography (MEG) data from the Amsterdam MS cohort were included from 176 MS patients and 33 healthy controls. FC was calculated between all regions of the Brainnetome atlas in six conventional frequency bands. Cognitive function and disability were evaluated by previously validated measures. The relationships between saccadic parameters and both FC and clinical scores in MS patients were analysed using multivariate linear regression models. Results In MS pro- and anti-saccades were abnormal compared to healthy controls A relationship of saccadic eye movements was found with FC of the oculomotor network, which was stronger for regional than global FC. In general, abnormal eye movements were related to higher delta and theta FC but lower beta FC. Strongest associations were found for pro-saccadic latency and FC of the precuneus (beta band β = -0.23, p = .006), peak velocity and FC of the parietal eye field (theta band β = -0.25, p = .005) and gain and FC of the inferior frontal eye field (theta band β = -0.25, p = .003). Pro-saccadic latency was also strongly associated with disability scores and cognitive dysfunction. Conclusions Impaired saccadic eye movements were related to functional connectivity of the oculomotor network and clinical performance in MS. This study also showed that, in addition to global network connectivity, studying regional changes in MEG studies could yield stronger correlations.
Collapse
Affiliation(s)
- J A Nij Bijvank
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - E M M Strijbis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - I M Nauta
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S D Kulik
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - L J Balk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - C J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - A Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J J G Geurts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - B M J Uitdehaag
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L J van Rijn
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Onze Lieve Vrouwe Gasthuis, Department of Ophthalmology, Amsterdam, the Netherlands
| | - A Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the UCL Queen Square Institute of Neurology, London, United Kingdom
| | - M M Schoonheim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Ayadi N, Oertel FC, Asseyer S, Rust R, Duchow A, Kuchling J, Bellmann-Strobl J, Ruprecht K, Klistorner A, Brandt AU, Paul F, Zimmermann HG. Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders. Mult Scler 2021; 28:757-767. [PMID: 34379018 PMCID: PMC8978464 DOI: 10.1177/13524585211032801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Decreased motion perception has been suggested as a marker for visual pathway
demyelination in optic neuritis (ON) and/or multiple sclerosis (MS). Objectives: To examine the influence of neuro-axonal damage on motion perception in MS
and neuromyelitis optica spectrum disorders (NMOSD). Methods: We analysed motion perception with numbers-from-motion (NFM), visual acuity,
(multifocal (mf)) VEP, optical coherence tomography in patients with MS
(n = 38, confirmatory cohort n = 43),
NMOSD (n = 13) and healthy controls (n =
33). Results: NFM was lower compared with controls in MS (B = −12.37,
p < 0.001) and NMOSD (B = −34.5,
p < 0.001). NFM was lower in ON than in non-ON eyes
(B = −30.95, p = 0.041) in NMOSD, but
not MS. In MS and NMOSD, lower NFM was associated with worse visual acuity
(B = −139.4, p <
0.001/B = −77.2, p < 0.001) and low
contrast letter acuity (B = 0.99, p =
0.002/B = 1.6, p < 0.001), thinner
peripapillary retinal nerve fibre layer (B = 1.0,
p < 0.001/ B = 0.92,
p = 0.016) and ganglion cell/inner plexiform layer
(B = 64.8, p <
0.001/B = 79.5, p = 0.006), but not
with VEP P100 latencies. In the confirmatory MS cohort, lower NFM was
associated with thinner retinal nerve fibre layer (B =
1.351, p < 0.001) and increased mfVEP P100 latencies
(B = −1.159, p < 0.001). Conclusions: Structural neuro-axonal visual pathway damage is an important driver of
motion perception impairment in MS and NMOSD.
Collapse
Affiliation(s)
- Noah Ayadi
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike C Oertel
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ankelien Duchow
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/ Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Klistorner
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia/ Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany/Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/ Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|