1
|
Chagnon F, Bourgouin A, Lebel R, Bonin MA, Marsault E, Lepage M, Lesur O. Smart imaging of acute lung injury: exploration of myeloperoxidase activity using in vivo endoscopic confocal fluorescence microscopy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L543-51. [PMID: 26232301 DOI: 10.1152/ajplung.00289.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB.
Collapse
Affiliation(s)
- Frédéric Chagnon
- Soins Intensifs Médicaux, Département de Médecine; Centre de Recherche Clinique du CHUS
| | - Alexandra Bourgouin
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Réjean Lebel
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Marc-André Bonin
- Centre de Recherche Clinique du CHUS; Laboratoire de Chimie Médicinale, Institut de Pharmacologie de Sherbrooke Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Marsault
- Centre de Recherche Clinique du CHUS; Laboratoire de Chimie Médicinale, Institut de Pharmacologie de Sherbrooke Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Olivier Lesur
- Soins Intensifs Médicaux, Département de Médecine; Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| |
Collapse
|
2
|
Huang H, Hu G, Wang C, Xu H, Chen X, Qian A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation 2014; 37:235-46. [PMID: 24045962 DOI: 10.1007/s10753-013-9734-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the protective effects of cepharanthine (CEP) on inflammation in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and a LPS-induced lung injury model in vivo. RAW264.7 cells were treated with various concentrations of CEP for 1 h followed by incubation with or without 1 μg/ml LPS for 18 h. TNF-α, IL-6, and IL-1β in the supernatants were measured by ELISA. Nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways were analyzed by Western blot. Mice were randomly divided into control group, LPS group, CEP + LPS group, and dexamethasone + LPS group. A male BALB/c mouse model of acute lung injury was induced by LPS. Bronchoalveolar lavage fluid was collected for inflammatory cell count and cytokine assays. Histopathologic examination was performed on mice that were not subjected to bronchoalveolar lavage fluid collection. CEP dose-dependently inhibited the release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. Significantly, CEP dose-dependently suppressed NF-κB activation, IκBα degradation, and phosphorylation of ERK, JNK, and p38 induced by LPS. In vivo, it was also observed that CEP attenuated lung histopathologic changes and down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in the mouse acute lung injury model. These results suggest that CEP potentially decreases inflammation in vitro and in vivo and might be a therapeutic agent against inflammatory diseases.
Collapse
Affiliation(s)
- Hailong Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
Yoshida T, Nagai K, Inomata T, Ito Y, Betsuyaku T, Nishimura M. Relationship between neutrophil influx and oxidative stress in alveolar space in lipopolysaccharide-induced lung injury. Respir Physiol Neurobiol 2014; 191:75-83. [DOI: 10.1016/j.resp.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
4
|
Chung IS, Kim JA, Kim JA, Choi HS, Lee JJ, Yang M, Ahn HJ, Lee SM. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg 2013; 116:327-35. [PMID: 23302986 DOI: 10.1213/ane.0b013e31827aec06] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although anesthetic-induced inhibition of lipopolysaccharide (LPS)-induced lung injury has been recognized, the underlying mechanism is obscure. Some studies suggest that reactive oxygen species (ROS) by isoflurane play a crucial role for anesthetic-induced protective effects on the brain or the heart; however, it still remains controversial. In this study, we examined the role of isoflurane-derived ROS in isoflurane-induced inhibition of lung injury and nuclear factor κB (NFκB) activation in LPS-challenged rat lungs. METHODS Male Sprague-Dawley rats were subjected to inhalation of 1.0 minimum alveolar concentration of isoflurane for 60 minutes, and intratracheal LPS 0.1 mg was administered 60 minutes later. In some cases, ROS scavenger, 2-mercaptopropinyl glycine or N-acetylcysteine was given 30 minutes before isoflurane. ROS generation was measured by fluorometer before LPS challenge and 4 hours after. Isoflurane's preconditioning effect was assessed by histologic examination, protein content, neutrophil recruitment, and determination of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels in bronchoalveolar lavage fluid and lung tissue. Western blotting measured phosphorylation of inhibitory κB α (ser 32/36), NFκB p65, and inducible nitric oxide synthase (iNOS). TNF-α and IL-6 mRNA expression and immunofluorescence staining for iNOS were also assessed. RESULTS Isoflurane preconditioning reduced inflammatory lung injury and TNF-α, IL-1β, and IL-6 release in the lung. Isoflurane upregulated ROS generation before LPS but inhibited a ROS burst after LPS challenge. ROS scavenger administration before isoflurane abolished the isoflurane preconditioning effect as well as isoflurane-induced inhibition of phosphorylation of inhibitory κBα, NFκB p65, iNOS activation, and mRNA expression of TNF-α and IL-6 in acute LPS-challenged lungs. CONCLUSIONS This study suggests a crucial role of upregulated ROS generation by isoflurane for modification of inflammatory pathways by isoflurane preconditioning in acute inflammation of the lung.
Collapse
Affiliation(s)
- In Sun Chung
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gao M, Chen L, Yu H, Sun Q, Kou J, Yu B. Diosgenin down-regulates NF-κB p65/p50 and p38MAPK pathways and attenuates acute lung injury induced by lipopolysaccharide in mice. Int Immunopharmacol 2012; 15:240-5. [PMID: 23246979 DOI: 10.1016/j.intimp.2012.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/25/2012] [Accepted: 11/30/2012] [Indexed: 01/16/2023]
Abstract
Diosgenin (Dio), a major active component of steroidal sapogenin of the traditional Chinese herb Dioscorea zingiberensis C.H.Wright, shows various activities including anti-inflammatory, anti-thrombotic activities, anti-cancer properties etc. In the present study, we found that diosgenin significantly suppressed the phosphorylation of lung NF-κB p50/p65 and MAPK/p38 in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice, when given orally at doses of 0.1, 1.0 and 10mg/kg 1h prior to LPS challenge (30 mg/kg, intravenous injection). Moreover, diosgenin attenuated the lung histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells. In addition, diosgenin significantly decreased the lung wet to dry weight (W/D) ratio and nitrite/nitrate content at three doses, and also markedly inhibited LPS-induced body temperature decrease and nitrite/nitrate elevation in plasma. Besides, diosgenin could significantly suppress activation of NF-κB p65/p50, p38 and expression of inducible nitric oxide synthase (iNOS) in LPS-induced THP-1 cells. Our findings indicate the potential application of diosgenin for ALI treatment.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
6
|
Kelleher ZT, Potts EN, Brahmajothi MV, Foster MW, Auten RL, Foster WM, Marshall HE. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol Lung Cell Mol Physiol 2011; 301:L327-33. [PMID: 21724860 DOI: 10.1152/ajplung.00463.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) expression is increased in the airway epithelium in acute inflammatory disorders although the physiological impact remains unclear. We have previously shown that NOS2 inhibits NF-κB (p50-p65) activation in respiratory epithelial cells by inducing S-nitrosylation of the p65 monomer (SNO-p65). In addition, we have demonstrated that mouse lung SNO-p65 levels are acutely depleted in a lipopolysaccharide (LPS) model of lung injury and that augmenting SNO-p65 levels before LPS treatment results in decreased airway epithelial NF-κB activation, airway inflammation, and lung injury. We now show that aerosolized LPS induces NOS2 expression in the respiratory epithelium concomitant with an increase in lung SNO-p65 levels and a decrease in airway NF-κB activity. Genetic deletion of NOS2 results in an absence of SNO-p65 formation, persistent NF-κB activity in the respiratory epithelium, and prolonged airway inflammation. These results indicate that a primary function of LPS-induced NOS2 expression in the respiratory epithelium is to modulate the inflammatory response through deactivation of NF-κB via S-nitrosylation of p65, thereby counteracting the initial stimulus-coupled denitrosylation.
Collapse
Affiliation(s)
- Zachary T Kelleher
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Rauch C, Pluen A, Foster N, Loughna P, Mobasheri A, Lagadic-Gossmann D, Counillon L. On some aspects of the thermodynamic of membrane recycling mediated by fluid phase endocytosis: evaluation of published data and perspectives. Cell Biochem Biophys 2010; 56:73-90. [PMID: 20013072 DOI: 10.1007/s12013-009-9072-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The theoretical and experimental description of fluid phase endocytosis (FPE) requires an asymmetry in phospholipid number between the two leaflets of the cell membrane, which provides the biomechanical torque needed to generate membrane budding. Although the motor force behind FPE is defined, its kinetic has yet to be determined. Based on a body of evidences suggesting that the mean surface tension is unlikely to be involved in endocytosis we decided to determine whether the cytosolic hydrostatic pressure could be involved, by considering a constant energy exchanged between the cytosol and the cell membrane. The theory is compared to existing experimental data obtained from FPE kinetic studies in living cells where altered phospholipid asymmetry or changes in the extracellular osmotic pressure have been investigated. The model demonstrates that FPE is dependent on the influx and efflux of vesicular volumes (i.e. vesicular volumes recycling) rather than the membrane tension of cells. We conclude that: (i) a relationship exists between membrane lipid number asymmetry and resting cytosolic pressure and (ii) the validity of Laplace's law is limited to cells incubated in a definite hypotonic regime. Finally, we discuss how the model could help clarifying elusive observations obtained from different fields and including: (a) the non-canonical shuttling of aquaporin in cells, (b) the relationship between high blood pressure and inflammation and (c) the mechanosensitivity of the sodium/proton exchanger.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yin K, Gribbin E, Emanuel S, Orndorff R, Walker J, Weese J, Fallahnejad M. Histochemical Alterations in One Lung Ventilation. J Surg Res 2007; 137:16-20. [PMID: 17112543 DOI: 10.1016/j.jss.2006.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/15/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND One lung ventilation is a commonly performed surgical procedure. Although there have been several reports showing that one-lung ventilation can cause pathophysiological alterations such as pulmonary hypoxic vasoconstriction and intrapulmonary shunting, there have been virtually no reports on the effects of one-lung ventilation on lung histology. MATERIALS AND METHODS Yorkshire pigs (11-17 kg) were anesthetized, a tracheotomy performed and a tracheal tube inserted. The chest was opened and one lung ventilation (OLV), was induced by clamping of the right main bronchus. OLV was continued for 60 min before the clamp was removed and two lung ventilation (TLV) started. TLV was continued for 30 to 60 min. Blood and lung biopsies were taken immediately before OLV, 30 min and 60 min of OLV and after restoration of TLV. RESULTS Histological analyses revealed that the non-ventilated lung was totally collapsed during OLV. On reventilation, there was clear evidence of vascular congestion and alveolar wall thickening at 30 min after TLV. At 60 min of TLV, there was still vascular congestion. Serum nitrite levels (as an index of nitric oxide production) showed steady decline over the course of the experimental period, reaching a significantly low level on reventilation (compared with baseline levels before OLV). Lung MPO activity (marker of neutrophil sequestration) and serum TNFalpha levels were not raised during the entire experimental period. CONCLUSIONS These results suggest that there was lung vascular injury after OLV, which was associated with reduced levels of nitric oxide production and not associated with an inflammatory response.
Collapse
Affiliation(s)
- Kingsley Yin
- Department of Cell Biology, University of Medicine and Dentistry, NJ-School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Physiologie und Pathophysiologie der Zelle. CHIRURGISCHE INTENSIVMEDIZIN 2007. [PMCID: PMC7121117 DOI: 10.1007/978-3-211-29682-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Qian LB, Wang HP, Qiu WL, Huang H, Bruce IC, Xia Q. Interleukin-2 protects against endothelial dysfunction induced by high glucose levels in rats. Vascul Pharmacol 2006; 45:374-382. [PMID: 16837248 DOI: 10.1016/j.vph.2006.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 05/04/2006] [Accepted: 06/07/2006] [Indexed: 11/15/2022]
Abstract
AIMS Interleukin-2 (IL-2) can modulate cardiovascular functions, but the effect of IL-2 on vascular endothelial function in diabetes is not known. We hypothesized that IL-2 may attenuate endothelial dysfunction induced by high glucose or diabetes. So the aim of this study was to investigate the effect of IL-2 on endothelium-response of aortas incubated with high glucose or from diabetic rats and its underlying mechanism. METHODS Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside (SNP)-induced endothelium-independent relaxation (EIR), superoxide dismutase (SOD) and nitric oxide synthase (NOS) were measured in aortas isolated from non-diabetic rats and exposed to a high glucose concentration and from streptozotocin-induced diabetic rats. RESULTS Incubation of aortic rings with high glucose (44 mM) for 4 h resulted in a significant inhibition of EDR, but had no effects on EIR. Co-incubation with IL-2 for 40 min prevented the inhibition of EDR caused by high glucose in a concentration-dependent manner. Similarly, high glucose decreased SOD and NOS activity in aortic tissue. IL-2 (1000 U/ml) significantly attenuated the decrease of SOD and NOS activity caused by high glucose. In addition, EDR declined along with the decrease of serum NO level in aortas from STZ-induced diabetic rats. Injection of IL-2 (5000 and 50,000 U kg(-1) d(-1), s.c.) for 5 weeks prevented the inhibition of EDR and the decrease of serum NO levels caused by diabetes. CONCLUSIONS IL-2 significantly ameliorated the endothelial dysfunction induced by hyperglycemia, in which the activation of the NO pathway and SOD may be involved.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/physiopathology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Glucose/pharmacology
- In Vitro Techniques
- Interleukin-2/pharmacology
- Male
- Nitric Oxide/blood
- Nitric Oxide Synthase/metabolism
- Nitroprusside/pharmacology
- Rats
- Rats, Sprague-Dawley
- Superoxide Dismutase/metabolism
- Time Factors
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Ling-Bo Qian
- Department of Physiology, Zhejiang University School of Medicine, 353 Yan-an Road, Hangzhou 310031, China
| | | | | | | | | | | |
Collapse
|
11
|
Lemineur T, Deby-Dupont G, Preiser JC. Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how? Curr Opin Clin Nutr Metab Care 2006; 9:704-10. [PMID: 17053423 DOI: 10.1097/01.mco.0000247467.41661.f3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW This review is dedicated to updating the knowledge on oxidative stress in critically ill patients with an intense inflammatory reaction, and to link it with recent findings supporting the possible involvement of oxidative injuries in systems and organs that frequently fail in the critically ill. RECENT FINDINGS Some direct or indirect biomarkers of oxidative stress have been validated in critically ill patients, and further support the major role of oxidative stress in these conditions. SUMMARY The assessment of oxidative stress, defined as the association between an increased production of oxygen-derived species and an exhaustion of the stores of antioxidants, requires a multimodal approach. Oxidative damage itself can be much better estimated by quantifying the oxidative byproducts of the lipids and proteins associated with an evaluation of the remaining stores of the corresponding functional antioxidants, or the activity of antioxidant enzymes, than by global tests of the total oxidative damage or the total antioxidant stores. Recent clinical data confirm an important role of increased oxidative stress in the acute dysfunctions of the respiratory, renal and cerebral systems.
Collapse
Affiliation(s)
- Thierry Lemineur
- Department of General Intensive Care, University Hospital Centre, University of Liege, Domaine Universitaire du Sart-Tilman, B 35, B-4000 Liège, Belgium
| | | | | |
Collapse
|