1
|
Shariatzadeh M, Payán-Gómez C, Kzhyshkowska J, Dik WA, Leenen PJM. Polarized Macrophages Show Diverse Pro-Angiogenic Characteristics Under Normo- and Hyperglycemic Conditions. Int J Mol Sci 2025; 26:4846. [PMID: 40429986 PMCID: PMC12111939 DOI: 10.3390/ijms26104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Angiogenesis plays a crucial role in solid tumor growth. Ischemia and inflammation induce various angiogenic mediators, and patient metabolic conditions importantly influence this process. Macrophages closely interact with the vascular system and regulate angiogenesis through pro/anti-angiogenic factors. Traditionally, pro-angiogenic activity has been attributed to M2-like macrophages. We question this, as recent evidence suggests that also M1-like macrophages can be pro-angiogenic. Therefore, the aim is to identify the pro/anti-angiogenic gene expression profiles of human polarized macrophages unbiasedly. We also examine the effect of hyperglycemia on angiogenic gene expression, reflecting its role in diabetes and other metabolic conditions. Bioinformatic analysis was performed on the angiogenesis-related gene expression profiles of CD14+ monocyte-derived M1(IFN-γ)- and M2(IL-4)-polarized macrophages. The top differentially expressed genes were selected for validation. Macrophages were generated in vitro and polarized to M1(IFN-γ) and M2(IL-4/IL-6) cells under standard/hyperglycemic conditions. After immunophenotypic confirmation, selected gene expression was quantified using qPCR. IL-4 and IL-6 induce distinct M2-like phenotypes with mixed pro/anti-angiogenic gene expression. Remarkably, IFN-γ stimulation also increases several pro-angiogenic genes. Hyperglycemia affects the angiogenic expression profile in both M1- and M2-like macrophages, although distinctive identities remain intact. The pro-angiogenic phenotype is not limited to M2-polarized macrophages. Both M1- and M2-like macrophages express complex pro/anti-angiogenic gene profiles, which are only mildly influenced by hyperglycemia.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - César Payán-Gómez
- Academic Direction, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202010, Colombia;
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- German Red Cross Blood Service Baden-Württemberg—Hessen, 89081 Ulm, Germany
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
3
|
Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:313-329. [PMID: 32940150 DOI: 10.1089/ten.teb.2020.0154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.
Collapse
Affiliation(s)
- Eun-Jin Lee
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| | - Mahim Jain
- Kennedy Krieger Institute, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella Alimperti
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| |
Collapse
|
4
|
Simons KH, de Vries MR, Peters HAB, Jukema JW, Quax PHA, Arens R. CD8+ T Cells Protect During Vein Graft Disease Development. Front Cardiovasc Med 2019; 6:77. [PMID: 31263704 PMCID: PMC6584838 DOI: 10.3389/fcvm.2019.00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Aims: Vein grafts are frequently used conduits for arterial reconstruction in patients with cardiovascular disease. Unfortunately, vein graft disease (VGD) causes diminished patency rates. Innate immune system components are known to contribute to VGD. However, the role of T cells has yet to be established. The purpose of this study was to investigate the role of T cells and T cell activation pathways via the T cell receptor (TCR), co-stimulation and bystander effect in VGD. Methods and results: Here, we show upon vein graft surgery in mice depleted of CD4+ T cells or CD8+ T cells, that CD8+ T cells are locally activated and have a major protective role for vein graft patency. In presence of CD8+ T cells vein grafts appear patent while CD8+ T cell depletion results in occluded vein grafts with increases apoptosis. Importantly, the protective effect of CD8+ T cells in VGD development was TCR and co-stimulation independent. This was demonstrated in vein grafts of OT-I mice, CD70−/−, CD80/86−/−, and CD70/80/86−/− mice compared to C57BL/6 mice. Interestingly, cytokines including IL-15, IL-18, IL-33, and TNF are up-regulated in vein grafts. These cytokines are co-operatively capable to activate CD8+ T cells in a bystander-mediated fashion, in contrast to CD4+ T cells. Conclusions: T cells are modulators of VGD with a specific protective role of CD8+ T cells, which are locally activated in vein grafts. CD8+ T cells may protect against occlusive lesions by providing survival signals, and concert their protection independent of TCR and co-stimulation signaling.
Collapse
Affiliation(s)
- Karin H Simons
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrika A B Peters
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Qin Y, Zhang C. Endothelial progenitor cell‑derived extracellular vesicle‑meditated cell‑to‑cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Mol Med Rep 2017; 16:7018-7024. [PMID: 28901383 DOI: 10.3892/mmr.2017.7403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Bone tissue engineering is a promising treatment strategy to increase bone regeneration. Endothelial progenitor cells (EPCs) and bone marrow stromal cells (BMSCs) are commonly used to promote vessel formation and osteoblastic differentiation in tissue engineering. Previous studies have demonstrated that EPCs regulate both proliferation and differentiation of BMSCs. However, the underlying mechanism remains unclear. Understanding this mechanism is critical to developing more effective treatments. The role of extracellular vesicles in cell‑to‑cell communication has attracted substantial attention. These small vesicles deliver proteins, DNA, and RNA and consequently regulate the commitment, function, and differentiation of target cells. In the present study, EPC‑derived extracellular vesicles (EPC‑EVs were isolated using gradient ultracentrifugation and ultrafiltration and the influence of EPC‑EVs on BMSC osteoblastic differentiation and proliferation was examined in vitro. The results indicated that EPC‑EVs regulate the osteoblastic differentiation of BMSCs by inhibiting the expression of osteogenic genes and increasing proliferation in vitro. It is suggested that the results regarding the role of EPC‑EVs will provide a novel way to explain the crosstalk between EPCs and BMSCs.
Collapse
Affiliation(s)
- Yunhao Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200030, P.R. China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200030, P.R. China
| |
Collapse
|
6
|
Recchioni R, Marcheselli F, Antonicelli R, Lazzarini R, Mensà E, Testa R, Procopio AD, Olivieri F. Physical activity and progenitor cell-mediated endothelial repair in chronic heart failure: Is there a role for epigenetics? Mech Ageing Dev 2016; 159:71-80. [DOI: 10.1016/j.mad.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/09/2023]
|
7
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
8
|
Huethorst E, Krebber MM, Fledderus JO, Gremmels H, Xu YJ, Pei J, Verhaar MC, Cheng C. Lymphatic Vascular Regeneration: The Next Step in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26204330 DOI: 10.1089/ten.teb.2015.0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces quality of life of patients on a physical, mental, social, and economic basis. Current therapeutic approaches in treatment of lymphatic disease are limited. Over the last decades, great progress has been made in the development of therapeutic strategies to enhance vascular regeneration. These solutions to treat vascular disease may also be applicable in the treatment of lymphatic diseases. Comparison of the organogenic process and biological organization of the vascular and lymphatic systems and studies in the regulatory mechanisms involved in lymphangiogenesis and angiogenesis show many common features. In this study, we address the similarities between both transport systems, and focus in depth on the biology of lymphatic development. Based on the current advances in vascular regeneration, we propose different strategies for lymphatic tissue engineering that may be used for treatment of primary and secondary lymphedema.
Collapse
Affiliation(s)
- Eline Huethorst
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Merle M Krebber
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Joost O Fledderus
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Hendrik Gremmels
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Yan Juan Xu
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jiayi Pei
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marianne C Verhaar
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Caroline Cheng
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands .,2 Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter , Rotterdam, The Netherlands
| |
Collapse
|
9
|
Favre J, Yildirim C, Leyen TA, Chen WJY, van Genugten RE, van Golen LW, Garcia-Vallejo JJ, Musters R, Baggen J, Fontijn R, van der Pouw Kraan T, Serné E, Koolwijk P, Diamant M, Horrevoets AJG. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol. Vascul Pharmacol 2015; 75:7-18. [PMID: 26254104 DOI: 10.1016/j.vph.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Cansu Yildirim
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Thomas A Leyen
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Weena J Y Chen
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Renate E van Genugten
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Larissa W van Golen
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Juan-Jesus Garcia-Vallejo
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Rene Musters
- Department of Physiology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Josefien Baggen
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Ruud Fontijn
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Tineke van der Pouw Kraan
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Erik Serné
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Michaela Diamant
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Anton J G Horrevoets
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Yıldırım C, Nieuwenhuis S, Teunissen PF, Horrevoets AJ, van Royen N, van der Pouw Kraan TC. Interferon-Beta, a Decisive Factor in Angiogenesis and Arteriogenesis. J Interferon Cytokine Res 2015; 35:411-20. [DOI: 10.1089/jir.2014.0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Cansu Yıldırım
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sylvia Nieuwenhuis
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul F. Teunissen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J.G. Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
van der Pouw Kraan TCTM, Chen WJ, Bunck MCM, van Raalte DH, van der Zijl NJ, van Genugten RE, van Bloemendaal L, Baggen JM, Serné EH, Diamant M, Horrevoets AJG. Metabolic changes in type 2 diabetes are reflected in peripheral blood cells, revealing aberrant cytotoxicity, a viral signature, and hypoxia inducible factor activity. BMC Med Genomics 2015; 8:20. [PMID: 25956355 PMCID: PMC4446948 DOI: 10.1186/s12920-015-0096-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/30/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is characterized by central obesity, insulin resistance, dysglycemia, and a pro-atherogenic plasma lipid profile. MetS creates a high risk for development of type 2 diabetes (T2DM) and cardiovascular disease (CVD), presumably by altering inflammatory responses. Presently, it is unknown how the chronic metabolic disturbances in acute hyperglycemia, MetS and T2DM affect the immune activity of peripheral blood cells. METHODS We performed genome-wide expression analysis of peripheral blood cells obtained from patients with T2DM (n = 6) and age-, sex- , BMI- and blood pressure-matched obese individuals with MetS (n = 4) and lean healthy normoglycemic controls (n = 3), both under fasting conditions and after controlled induction of acute hyperglycemia during a 70 min hyperglycemic clamp. Differential gene expression during fasting conditions was confirmed by real-time PCR, for which we included additional age-, sex-, BMI-, and blood pressure-matched obese individuals with (n = 4) or without (n = 4) MetS. RESULTS Pathway and Gene ontology analysis applied to baseline expression profiles of peripheral blood cells from MetS and T2DM patients revealed metabolic changes, highly similar to a reoviral infection gene signature in T2DM patients. Transcription factor binding site analysis indicated that increased HIF-1α activity, a transcription factor induced by either hypoxia or oxidative stress, is responsible for this aberrant metabolic profile in peripheral blood cells from T2DM patients. Acute hyperglycemia in healthy controls resulted in reduced expression of cytotoxicity-related genes, representing NK- and CD8(+) cells. In obese controls, MetS and especially T2DM patients, baseline expression of genes involved in cytotoxicity was already low, compared to healthy controls and did not further decrease upon acute hyperglycemia. CONCLUSIONS The reduced activity of cytotoxic genes in T2DM is explained by chronic hyperglycemia, but its acute effects are restricted to healthy controls. Genome expression of circulating leukocytes from T2DM patients differs from MetS individuals by a specific reovirus signature. Our data thus suggest a role for suppressed anti-viral capacity in the etiology of diabetes.
Collapse
Affiliation(s)
| | - Weena J Chen
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Mathijs C M Bunck
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daniel H van Raalte
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nynke J van der Zijl
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Renate E van Genugten
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Liselotte van Bloemendaal
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josefien M Baggen
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Erik H Serné
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Michaela Diamant
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J G Horrevoets
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Abstract
BACKGROUND The role of bone marrow-derived cells in stimulating angiogenesis, vascular repair or remodelling has been well established, but the nature of the circulating angiogenic cells is still controversial. DESIGN The existing literature on different cell types that contribute to angiogenesis in multiple pathologies, most notably ischaemic and tumour angiogenesis, is reviewed, with a focus on subtypes of angiogenic mononuclear cells and their local recruitment and activation. RESULTS A large number of different cells of myeloid origin support angiogenesis without incorporating permanently into the newly formed vessel, which distinguishes these circulating angiogenic cells (CAC) from endothelial progenitor cells (EPC). Although CAC frequently express individual endothelial markers, they all share multiple characteristics of monocytes and only express a limited set of discriminative surface markers in the circulation. When cultured ex vivo, or surrounding the angiogenic vessel in vivo, however, many of them acquire similar additional markers, making their discrimination in situ difficult. CONCLUSION Different subsets of monocytes show angiogenic properties, but the distinct microenvironment, in vitro or in vivo, is needed for the development of their pro-angiogenic function.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|