1
|
Wang SB, Venkatraman V, Crowgey EL, Liu T, Fu Z, Holewinski R, Ranek M, Kass DA, O'Rourke B, Van Eyk JE. Protein S-Nitrosylation Controls Glycogen Synthase Kinase 3β Function Independent of Its Phosphorylation State. Circ Res 2018; 122:1517-1531. [PMID: 29563102 DOI: 10.1161/circresaha.118.312789] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE GSK-3β (glycogen synthase kinase 3β) is a multifunctional and constitutively active kinase known to regulate a myriad of cellular processes. The primary mechanism to regulate its function is through phosphorylation-dependent inhibition at serine-9 residue. Emerging evidence indicates that there may be alternative mechanisms that control GSK-3β for certain functions. OBJECTIVES Here, we sought to understand the role of protein S-nitrosylation (SNO) on the function of GSK-3β. SNO-dependent modulation of the localization of GSK-3β and its ability to phosphorylate downstream targets was investigated in vitro, and the network of proteins differentially impacted by phospho- or SNO-dependent GSK-3β regulation and in vivo SNO modification of key signaling kinases during the development of heart failure was also studied. METHODS AND RESULTS We found that GSK-3β undergoes site-specific SNO both in vitro, in HEK293 cells, H9C2 myoblasts, and primary neonatal rat ventricular myocytes, as well as in vivo, in hearts from an animal model of heart failure and sudden cardiac death. S-nitrosylation of GSK-3β significantly inhibits its kinase activity independent of the canonical phospho-inhibition pathway. S-nitrosylation of GSK-3β promotes its nuclear translocation and access to novel downstream phosphosubstrates which are enriched for a novel amino acid consensus sequence motif. Quantitative phosphoproteomics pathway analysis reveals that nuclear GSK-3β plays a central role in cell cycle control, RNA splicing, and DNA damage response. CONCLUSIONS The results indicate that SNO has a differential effect on the location and activity of GSK-3β in the cytoplasm versus the nucleus. SNO modification of GSK-3β occurs in vivo and could contribute to the pathobiology of heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Sheng-Bing Wang
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Vidya Venkatraman
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Erin L Crowgey
- Department of Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE (E.L.C.)
| | - Ting Liu
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | | | - Ronald Holewinski
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Mark Ranek
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - David A Kass
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Brian O'Rourke
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Jennifer E Van Eyk
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.) .,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| |
Collapse
|
3
|
Rodríguez-González J, Wilkins-Rodríguez A, Argueta-Donohué J, Aguirre-García M, Gutiérrez-Kobeh L. Leishmania mexicana promastigotes down regulate JNK and p-38 MAPK activation: Role in the inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells. Exp Parasitol 2016; 163:57-67. [PMID: 26777406 DOI: 10.1016/j.exppara.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DC) are one of the principal host cells of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously shown that the infection of monocyte-derived dendritic cells (moDC) with Leishmania mexicana inhibits campthotecin-induced apoptosis. Nevertheless, the mechanisms involved in the inhibition of apoptosis of dendritic cells by Leishmania have not been established. Mitogen-activated protein kinases (MAPK) are key participants in the process of apoptosis and different species of Leishmania have been shown to regulate these kinases. In the present study, we analyzed the effect of L. mexicana promastigotes in the activation of JNK and p38 MAP kinase and their participation in the inhibition of apoptosis. The infection of moDC with L. mexicana promastigotes diminished significantly the phosphorylation of the MAP kinases JNK and p38. The inhibition of both kinases diminished DNA fragmentation, but in a major extent was the reduction of DNA fragmentation when JNK was inhibited. The capacity of L. mexicana promastigotes to diminish MAP kinases activation is probably one of the strategies employed to delay apoptosis induction in the infected moDC and may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Arturo Wilkins-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Jesús Argueta-Donohué
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Magdalena Aguirre-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico.
| |
Collapse
|