1
|
Yan H, Gao S, Xu A, Zuo L, Zhang J, Zhao Y, Cheng Q, Yin X, Sun C, Hu Y. MALAT1 regulates network of microRNA-15a/16-VEGFA to promote tumorigenesis and angiogenesis in multiple myeloma. Carcinogenesis 2023; 44:760-772. [PMID: 37549238 DOI: 10.1093/carcin/bgad053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
MALAT1 is one of the most hopeful members implicated in angiogenesis in a variety of non-malignant diseases. In multiple myeloma (MM), MALAT1 is recognized as the most highly expressed long non-coding RNA. However, the functional roles of MALAT1 in angiogenesis and the responsible mechanisms have not yet been explored. Herein, we discovered a novel regulatory network dependent on MALAT1 in relation to MM tumorigenesis and angiogenesis. We observed that MALAT1 was upregulated in MM and significantly associated with poor overall survival. MALAT1 knockdown suppressed MM cell proliferation and promoted apoptosis, while restricting endothelial cells angiogenesis. Moreover, MALAT1 directly targeted microRNA-15a/16, and microRNA-15a/16 suppression partly reverted the effects of MALAT1 deletion on MM cells in vitro as well as tumor growth and angiogenesis in vivo. In addition, further study indicated that MALAT1 functioned as a competing endogenous RNA for microRNA-15a/16 to regulate vascular endothelial growth factor A (VEGFA) expression. Our results suggest that MALAT1 plays an important role in the regulatory axis of microRNA-15a/16-VEGFA to promote tumorigenicity and angiogenesis in MM. Consequently, MALAT1 could serve as a novel promising biomarker and a potential antiangiogenic target against MM.
Collapse
Affiliation(s)
- Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiasi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhong Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianwen Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Yin XY, Liu Y, Lu ZM, Pang T, Cui HT, Xue XC, Fang GE, Luo TH. LncRNA NEAT-2 regulate the function of endothelial progenitor cells in experimental Sepsis model. Mol Biol Rep 2023; 50:6643-6654. [PMID: 37358763 DOI: 10.1007/s11033-023-08522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Sepsis is a life-threatening disease with a limited effectiveness and the potential mechanism remains unclear. LncRNA NEAT-2 is reported to be involved in the regulation of cardiovascular disease. This study aimed to investigate the function of NEAT-2 in sepsis. METHODS We built sepsis animal model with Male Balb/C mice induced by cecal ligation and puncture (CLP). A total of 54 mice were randomly assigned into eight groups: sham operation group (n = 18), CLP group (n = 18), CLP plus si-control group (n = 3), CLP plus si-NEAT2 group (n = 3), CLP plus mimic control group (n = 3), CLP plus miR-320 group (n = 3), CLP plus normal saline group (n = 3), and normal control group (n = 3). The number of peripheral endothelial progenitor cells (EPCs), the expression level of NEAT-2 and miR-320 were detected during progression of sepsis, as well as the number of peripheral EPCs and level of TNF-α, IL-6, VEGF, ALT, AST and Cr. In addition, the function of EPCs was evaluated after NEAT-2 knockdown and miR-320 overexpression in vitro. RESULTS The number of circulating EPCs increased significantly in sepsis. NEAT-2 expression was significantly increased in the progress of sepsis, accompanied with miR-320 downregulated. NEAT-2 knockdown and miR-320 overexpression attenuated hepatorenal function and increased cytokines in sepsis. Moreover, NEAT-2 knockdown and miR-320 overexpression decreased the proliferation, migration and angiogenesis of endothelial progenitor cells in vitro. CONCLUSIONS LncRNA-NEAT2 regulated the number and function of endothelial progenitor cells via miR-320 in sepsis, which may contribute to the development of novel potential clinical therapy for sepsis.
Collapse
Affiliation(s)
- Xiao-Yi Yin
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Hepatobiliary Pancreatic Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tao Pang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hang-Tian Cui
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xu-Chao Xue
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guo-En Fang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tian-Hang Luo
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
5
|
Liu C, Wang S, Xiang Z, Xu T, He M, Xue Q, Song H, Gao P, Cong Z. The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz. Front Pharmacol 2022; 13:952061. [PMID: 36091757 PMCID: PMC9452894 DOI: 10.3389/fphar.2022.952061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.
Collapse
Affiliation(s)
- Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| |
Collapse
|
6
|
Wang Y, Guo Y, Zhuang T, Xu T, Ji M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front Endocrinol (Lausanne) 2022; 13:936037. [PMID: 35957833 PMCID: PMC9361049 DOI: 10.3389/fendo.2022.936037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in various human tumors. LncRNA LINC00659 (LINC00659) is a newly identified lncRNA and its roles in tumors remain largely unclear. In this study, we elucidated the potential functions and molecular mechanisms of LINC00659 on the biological behaviors of gastric cancer (GC), and also explored its clinical significance. We firstly demonstrated that LINC00659 levels were distinctly up-regulated in both GC specimens and cells using bioinformatics analysis and RT-PCR. The results of ChIP assays and luciferase reporter assays confirmed that upregulation of LINC00659 was activated by SP1 in GC. Clinical assays revealed that higher levels of LINC00659 were associated with TNM stage, lymphatic metastasis, and poorer prognosis. Moreover, LINC00659 was confirmed to be an independent prognostic marker for the patients with GC using multivariate assays. Lost-of-function assays indicated that knockdown of LINC00659 suppressed the proliferation, metastasis, and EMT progress of GC cells in vitro. Mechanistic investigation indicated that LINC00659 served as a competing endogenous RNA (ceRNA) for miR-370, thereby resulting in the upregulation of leading to the depression of its endogenous target gene AQP3. Overall, our present study revealed that the LINC00659/miR-370/AQP3 axis contributes to GC progression, which may provide clues for the exploration of cancer biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Guo
- School of Medicine Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Li G, Zong W, Liu L, Wu J, Pang J. Knockdown of long non-coding RNA plasmacytoma variant translocation 1 relieves ox-LDL-induced endothelial cell injury through regulating microRNA-30c-5p in atherosclerosis. Bioengineered 2022; 13:2791-2802. [PMID: 35038974 PMCID: PMC8974020 DOI: 10.1080/21655979.2021.2019878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease involving endothelial dysfunction, and is one of the main causes of death from cardiovascular disease (CVD). Long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) is overexpressed in the serum of CVD patients. However, the mechanism by which lncRNA PVT1 functions in AS remains unknown. Our research was designed to probe interactions involving lncRNA PVT1 and oxidized low-density lipoprotein (ox-LDL)-stimulated endothelial cell injury in AS. lncRNA PVT1 expression in the serum of AS patients and ox-LDL-stimulated human umbilical vein endothelial cells (HUVECs) was detected using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell counting kit (CCK)-8 assays, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were used to determine cell proliferation, apoptosis, and levels of inflammatory cytokines, respectively. Moreover, the correlation between lncRNA PVT1 and miR-30 c-5p was predicted and verified using StarBase3.0, TargetScan, and luciferase reporter-gene assays. lncRNA PVT1 was overexpressed in the serum of AS patients and in ox-LDL-stimulated HUVECs relative to controls. Knockdown of lncRNA PVT1 facilitated proliferation, reduced apoptosis, and secretion of inflammatory factors in ox-LDL-treated HUVECs. Moreover, miR-30 c-5p was verified as a direct target of lncRNA PVT1. Furthermore, we observed that miR-30 c-5p expression was lower in AS patients than in controls. In addition, the influence of lncRNA PVT1 knockdown on ox-LDL-treated HUVECs was significantly reversed by downregulation of miR-30 c-5p. In conclusion, lncRNA PVT1 silencing inhibited HUVEC damage stimulated by ox-LDL via miR-30 c-5p regulation.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenxia Zong
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Lei Liu
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Juan Wu
- Department of Medical Laboratory, Eleven Wuhan Hospital, Wuhan, Hubei Province, China
| | - Jing Pang
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
8
|
Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes (Basel) 2022; 13:152. [PMID: 35052495 PMCID: PMC8774855 DOI: 10.3390/genes13010152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term given to the point where the number or activity of the pro-angiogenic factors exceeds that of the anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long noncoding ribonucleic acids (lncRNAs) have been found to play a role in the angiogenic switch by regulating gene expression, transcription, translation, and post translation modification. In this regard they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic lncRNAs have been found to correlate with patient survival. These lncRNAs are also potential drug targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we review the roles of lncRNAs in regulating the angiogenic switch. We cover specific examples of both pro and anti-angiogenic lncRNAs and discuss their potential use as both prognostic biomarkers and targets for the development of future therapies.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
9
|
Zhou F, Hu X, Feng W, Li M, Yu B, Fu C, Ou C. LncRNA H19 abrogates the protective effects of curcumin on rat carotid balloon injury via activating Wnt/β-catenin signaling pathway. Eur J Pharmacol 2021; 910:174485. [PMID: 34487706 DOI: 10.1016/j.ejphar.2021.174485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Intimal hyperplasia-induced restenosis is a common response to vascular endothelial damage caused by mechanical force or other stimulation, and is closely linked to vascular remodeling. Curcumin, a traditional Chinese medicine, exhibits potent protective effects in cardiovascular diseases; for example, it attenuates vascular remodeling. Although the suppressive effects of curcumin on diseases caused by vascular narrowing have been investigated, the underlying mechanisms remain unknown. Long non-coding RNAs (lncRNAs) regulate various pathological processes and affect the action of drugs. In the present study, we found that the curcumin remarkably downregulated the expression of lncRNA H19 and thereby inhibited intimal hyperplasia-induced vascular restenosis. Furthermore, the inhibition of the expression of H19 by curcumin resulted in the inactivation of the Wnt/β-catenin signaling. Overall, we show that curcumin suppresses intimal hyperplasia via the H19/Wnt/β-catenin pathway, implying that H19 is a critical molecule in the suppression of intimal hyperplasia after balloon injury by curcumin. These insights should be useful for potential application of curcumin as a therapeutic intervention in vascular stenosis.
Collapse
Affiliation(s)
- Feiran Zhou
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Xinyi Hu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Weijing Feng
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Minghui Li
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Bin Yu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Chenxing Fu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Long Non-Coding RNA Regulation of Epigenetics in Vascular Cells. Noncoding RNA 2021; 7:ncrna7040062. [PMID: 34698214 PMCID: PMC8544676 DOI: 10.3390/ncrna7040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms—often regulated by hypoxia—within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.
Collapse
|
11
|
lncRNA TUG1 regulates human pulmonary microvascular endothelial cell apoptosis via sponging of the miR-9a-5p/BCL2L11 axis in chronic obstructive pulmonary disease. Exp Ther Med 2021; 22:906. [PMID: 34257718 PMCID: PMC8243330 DOI: 10.3892/etm.2021.10338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the function of long non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) in chronic obstructive pulmonary disease and further assess the underlying molecular mechanisms. Flow cytometry analysis was performed to detect cell apoptosis of human pulmonary microvascular endothelial cells (HPMECs) treated with 1% cigarette smoke extract (CSE). The activity of caspase-3 was measured using a Caspase-3 Activity assay kit and the protein expression of cleaved caspase-3, caspase-3 and Bcl-2 like 11 (BCL2L11) were measured using western blotting. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure the expression of TUG1 mRNA levels in the treated cells. The association between TUG1, the miR-9a-5p/BCL2L11 axis and with miR-9a-5p were predicted and verified using a dual luciferase reporter assay system. The mRNA expression of miR-9a-5p and BCL2L11, and the transfection efficiency were measured by RT-qPCR. The results showed that CSE induced cell apoptosis and increased lncRNA TUG1 expression in HPMECs. CSE significantly reduced the expression of miR-9a-5p in HPMECs compared with the control group. TUG1-short hairpin RNA relieved cell apoptosis induced by CSE by upregulating miR-9a-5p in HPMECs. The present study predicted and verified that BCL2L11 is a direct target of miR-9a-5p. The mRNA expression of BCL2L11 was increased in HPMECs following CSE treatment compared with the control group. miR-9a-5p mimic and BCL2L11-plasmid markedly increased the expression of miR-9a-5p and BCL2L11, respectively. miR-9a-5p mimic reversed the increase in cell apoptosis induced by CSE by inhibiting BCL2L11 expression in HPMECs. To conclude, the present study demonstrated that lncRNA TUG1 exerted roles in cell apoptosis induced by CSE through modulating the miR-9a-5p/BCL2L11 axis.
Collapse
|
12
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
Decoding LncRNAs. Cancers (Basel) 2021; 13:cancers13112643. [PMID: 34072257 PMCID: PMC8199187 DOI: 10.3390/cancers13112643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been considered as unimportant additions to the transcriptome. Yet, in light of numerous studies, it has become clear that ncRNAs play important roles in development, health and disease. Long-ignored, long non-coding RNAs (lncRNAs), ncRNAs made of more than 200 nucleotides have gained attention due to their involvement as drivers or suppressors of a myriad of tumours. The detailed understanding of some of their functions, structures and interactomes has been the result of interdisciplinary efforts, as in many cases, new methods need to be created or adapted to characterise these molecules. Unlike most reviews on lncRNAs, we summarize the achievements on lncRNA studies by taking into consideration the approaches for identification of lncRNA functions, interactomes, and structural arrangements. We also provide information about the recent data on the involvement of lncRNAs in diseases and present applications of these molecules, especially in medicine.
Collapse
|
14
|
Li Q, Xiao Z, Wang Y, Liu X, Liu H, Luo Z, Zheng S. Alterations of long non-coding RNA and mRNA profiles associated with extracellular matrix homeostasis and vascular aging in rats. Bioengineered 2021; 12:832-843. [PMID: 33645431 PMCID: PMC8806258 DOI: 10.1080/21655979.2021.1889129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular aging has been closely associated with various cardiovascular disorders; however, its molecular mechanism remains poorly understood. In our study, RNA sequencing was utilized to explore the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in the thoracic aortas of young (3 weeks) and old (16 weeks) rats. Functional categorization of differentially expressed mRNAs was evaluated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, and lncRNA–microRNA–mRNA networks was constructed using Cytoscape software. In addition, three upregulated and three downregulated lncRNAs were further confirmed by quantitative reverse transcriptase-polymerase chain reaction. A total of 36 lncRNAs and 922 mRNAs were differential expression in the thoracic aortas of young and older rats. In addition, we found differentially expressed mRNAs that were enriched in multiple biological processes and signaling pathways associated with angiogenesis, such as extracellular matrix–receptor interaction and adenosine 3ʹ,5ʹ-monophosphate-activated protein kinase (AMPK) signaling. Moreover, AABR07013558.1, AABR07014823.1, and AABR07031489.1 were upregulated and ABR07053849.3, AABR07067310.2, and AC111292.1 were downregulated in the thoracic aortas of older rats compared with the young ones. Therefore, our findings provide several potential lncRNAs and mRNAs and signaling pathways related to vascular aging, which provide new clue for underlying the improvement of vascular aging.
Collapse
Affiliation(s)
- Qianqin Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Yongsheng Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zhiwen Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| |
Collapse
|
15
|
Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. Int J Biol Macromol 2020; 167:76-84. [PMID: 33248053 DOI: 10.1016/j.ijbiomac.2020.11.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Many dietary polysaccharides have been shown to protect the intestinal barrier integrity against several noxious stimuli. Previously, we have isolated a polysaccharide RAMPtp from Atractylodis macrocephalae Koidz, and analyzed its structure. However, the effects of RAMPtp on intestinal barrier function have not been investigated. Here, we evaluated the protective effects of RAMPtp on Dextran sulfate sodium (DSS)-induced intestinal epithelial cells (IECs) injury. The findings showed that RAMPtp boosted the proliferation and survival of IECs during DSS stimulation. Furthermore, we found that RAMPtp protected the IECs from injury induced by DSS through maintaining the barrier function and inflammation response. Mechanistically, we identified a novel lncRNA ITSN1-OT1, which was induced by RAMPtp during DSS stimulation. It blocked the nuclear import of phosphorylated STAT2 to prevent the DSS induced decreased expression and structural destroy of tight junction proteins. Hence, the study clarified the protective effects and mechanism of polysaccharides RAMPtp on DSS-induced intestinal barrier dysfunction.
Collapse
|
16
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
18
|
Macrophage Long Non-Coding RNAs in Pathogenesis of Cardiovascular Disease. Noncoding RNA 2020; 6:ncrna6030028. [PMID: 32664594 PMCID: PMC7549353 DOI: 10.3390/ncrna6030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is inextricably linked to cardiovascular disease (CVD). Macrophages themselves play important roles in atherosclerosis, as well as acute and chronic heart failure. Although the role of macrophages in CVD pathophysiology is well-recognized, little is known regarding the precise mechanisms influencing their function in these contexts. Long non-coding RNAs (lncRNAs) have emerged as significant regulators of macrophage function; as such, there is rising interest in understanding how these nucleic acids influence macrophage signaling, cell fate decisions, and activity in health and disease. In this review, we summarize current knowledge regarding lncRNAs in directing various aspects of macrophage function in CVD. These include foam cell formation, Toll-like receptor (TLR) and NF-kβ signaling, and macrophage phenotype switching. This review will provide a comprehensive understanding concerning previous, ongoing, and future studies of lncRNAs in macrophage functions and their importance in CVD.
Collapse
|
19
|
Zhang R, Li Y, Liu X, Qin S, Guo B, Chang L, Huang L, Liu S. FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J Cell Mol Med 2020; 24:8368-8378. [PMID: 32558131 PMCID: PMC7412708 DOI: 10.1111/jcmm.15292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemia/reperfusion (I/R)‐mediated acute myocardial infarction (AMI) is a major pathological factor implicated in the progression of ischemic heart disease (IHD). Long non‐coding RNA plays an important role in regulating the occurrence and development of cardiovascular disease. The aim of this study was to investigate the regulating role of LINC00261 in hypoxia/reoxygenation (H/R)‐induced cardiomyocyte apoptosis. The relative expression of LINC00261, miR‐23b‐3p and NRF2 were determined in rats I/R myocardial tissues and H/R‐induced cardiomyocytes. The rat model and cell model of LINC00261 overexpression were established to investigate the biological function of LINC00261 on H9C2 cell. The interaction between LINC00261, miR‐23b‐3p, NRF2 and FOXO3a was identified using bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation (RIP) assay, chromatin immunoprecipitation (CHIP) assay and qRT‐PCR. The expression of LINC00261 was significantly down‐regulated in myocardial tissues and H9C2 cell. Overexpression of LINC00261 improves cardiac function and reduces myocardium apoptosis. Interestingly, transcription factor FOXO3a was found to promote LINC00261 transcription. Moreover, LINC00261 was confirmed as a spong of miR23b‐3p and thereby positively regulates NRF2 expression in cardiomyocytes. Our findings reveal a novel role for LINC00261 in regulating H/R cardiomyocyte apoptosis and the potency of the LINC00261/miR‐23b‐3p/NRF2 axis as a therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Ruining Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Xiaopeng Liu
- The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Qin
- The Graduate School, GuiZhou medical university, GuiYang, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liang Chang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liu Huang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Suyun Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| |
Collapse
|
20
|
Ye F, Zhang J, Zhang Q, Zhang J, Chen C. Preliminary study on the mechanism of long noncoding RNA SENCR regulating the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2020; 235:9635-9643. [PMID: 32401347 DOI: 10.1002/jcp.29775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are one of the key regulatory links of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) are emerging as key regulators in AS development. In this study, we first assessed the expression level of smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) in the plasma of patients with coronary heart disease (CHD) and its predictive and diagnostic value. Second, we investigated the role of SENCR in the regulation network of human aortic-VSMCs (HA-VSMCs) proliferation and migration and determined its downstream regulatory mechanism. The results showed that SENCR was downregulated in the peripheral blood of CHD, and negatively related to the Gensini score. SENCR was enriched in HA-VSMCs and mainly distributed in cytoplasm. Overexpression of SENCR significantly inhibited HA-VSMCs proliferation, migration, and block cell cycle, while the knockdown of SENCR had the opposite effects. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that miR-4731-5p could directly bind to SENCR. Besides, we proved that FOXO3a inhibited HA-VSMCs proliferation and migration by binding to the 3'-untranslated region of miR-4731-5p. In summary, our research suggested that SENCR affects HA-VSMCs proliferation and migration via regulating the miR-4731-5p/FOXO3a pathway.
Collapse
Affiliation(s)
- Famin Ye
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jing Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Qiaoling Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jingjing Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Cheng Chen
- School of Life Science Department, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Li Q, Wang T, Huang S, Zuo Q, Jiang Z, Yang N, Sun L. LncRNA MALAT1 affects the migration and invasion of trophoblast cells by regulating FOS expression in early-onset preeclampsia. Pregnancy Hypertens 2020; 21:50-57. [PMID: 32408074 DOI: 10.1016/j.preghy.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Preeclampsia (PE), particularly early-onset PE (ePE), causes maternal and fetal complications and remains a major health problem in modern society. Aberrant uterine spiral artery remodeling leads to ePE through poor placentation. In this study, we investigated the role of the long non-coding RNA (lncRNA) MALAT1 in ePE pathogenesis. METHODS Total RNA was extracted from 40 paired placental ePE tissues and control groups. RNA levels were quantified by qRT-PCR and protein expression was determined by western blotand immunohistochemistry (IHC) analysis. The effects of MALAT1 on trophoblast migration and invasion were evaluated in HTR-8/SVneo and JAR cells. FOS was identified as a downstream functional gene of MALAT1 by RNA-seq. RNA binding protein immunoprecipitations (RIPs) were performed to reveal the cellular targets of MALAT1. RESULTS MALAT1 was poorly expressed in ePE placentas and its silencing (-/-) inhibited trophoblast invasion and migration. MALAT1 -/- also decreased N-cadherin and vimentin expression, but increased E-cadherin expression. RNA-seq analysis and subsequent RIP assays showed that MALAT1 improved FOS through Hu-antigen R (HuR) binding. FOS overexpression similarly enhanced trophoblast migration and invasion. IHC staining showed that E-cadherin was upregulated in placenta tissue from ePE groups, whilst FOS, N-cadherin, and vimentin were downregulated. CONCLUSION MALAT1 promotes trophoblast migration and invasion through FOS-induced epithelial mesenchymal transition (EMT). This highlights new roles for MALAT1 in the impairment of spiral artery remodeling in ePE pathogenesis.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyun Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
23
|
Unusual nature of long non-coding RNAs coding for “unusual peptides”. Gene 2020; 729:144298. [DOI: 10.1016/j.gene.2019.144298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 01/09/2023]
|
24
|
Abstract
RNA is produced from the majority of human genomic sequences, although only a relatively small portion of these transcripts has known functions. Diverse RNA species interact with RNA, DNA, proteins, lipids, and metabolites to form intricate molecular networks. In this review, we attempt to delineate diverse RNA functions by interaction types between RNA and other macromolecules. Through such interactions RNAs participate in essentially every major molecular function and process, including information flow and storage, environment sensing, signal transduction, and gene regulation at transcriptional and posttranscriptional levels. Through such interactions, RNAs promote or inhibit diverse biological processes, and act as catalyzer or quencher to modulate the pace of these progresses. Alterations and personal variations of these interactions are mechanistically coupled with disease etiology and phenotypical variations for clinical use.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, USA
| |
Collapse
|
25
|
Yan SM, Li H, Shu Q, Wu WJ, Luo XM, Lu L. LncRNA SNHG1 exerts a protective role in cardiomyocytes hypertrophy via targeting miR-15a-5p/HMGA1 axis. Cell Biol Int 2020; 44:1009-1019. [PMID: 31889385 DOI: 10.1002/cbin.11298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022]
Abstract
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high-mobility group AT-hook 1 (HMGA1) were confirmed to be targets of miR-15a-5p. SNHG1 promoted HMGA1 expression by sponging miR-15a-5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1-related pathway may be therapeutically harnessed to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Si-Min Yan
- Division of Clinical Pharmacy, Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu, 210000, China
| | - Hu Li
- Department of Cardiology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu, 210000, China
| | - Qing Shu
- Division of Clinical Pharmacy, Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu, 210000, China
| | - Wei-Jun Wu
- Division of Clinical Pharmacy, Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu, 210000, China
| | - Xue-Mei Luo
- Division of Clinical Pharmacy, Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu, 210000, China
| | - Lei Lu
- Department of Cardiology, Xuzhou Hospital of Traditional Chinese Medicine Affiliated to Medical School of Nanjing University of Traditional Chinese Medicine, 169 Zhong Shan South Road, Xuzhou, Jiangsu, 221000, China
| |
Collapse
|
26
|
|
27
|
Sekar D. Circular RNA: a new biomarker for different types of hypertension. Hypertens Res 2019; 42:1824-1825. [PMID: 31316171 DOI: 10.1038/s41440-019-0302-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
28
|
Mishra PK, Nemer G. Editorial: The Non-coding Genome and Cardiovascular Disease. Front Cardiovasc Med 2019; 6:98. [PMID: 31380396 PMCID: PMC6646411 DOI: 10.3389/fcvm.2019.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|