1
|
Wang R, Zhang H, Li S, Yan P, Shao S, Liu B, Li N. Current progress of in vitrovascular models on microfluidic chips. Biofabrication 2025; 17:022004. [PMID: 39899982 DOI: 10.1088/1758-5090/adb182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The vascular tissue, as an integral component of the human circulatory system, plays a crucial role in retaining normal physiological functions within the body. Pathologies associated with the vasculature, whether direct or indirect, also constitute significant public health concerns that afflict humanity, leading to the wide studies on vascular physiology and pathophysiology. Given the precious nature of human derived vascular tissue, substantial efforts have been dedicated to the construction of vascular models. Due to the high cost associated with animal experimentation and the inability to directly translate results to human, there is an increasing emphasis on the use of primary human cells for the development ofin vitrovascular models. For instance, obtaining an ApoE-/-mouse model for atherosclerosis research typically requires feeding a high-fat diet for over 10 weeks, whereasin vitrovascular models can usually be formed within 2 weeks. With advancements in microfluidic technology,in vitrovascular models capable of precisely emulating the hemodynamic environment within human vessels are becoming increasingly sophisticated. Microfluidic vascular models are primarily constructed through two approaches: (1) directly constructing the vascular models based on the three-layer structure of the vascular wall; (2) co-culture of endothelial cells and supporting cells within hydrogels. The former is effective to replicate vascular tissue structure mimicking vascular wall, while the latter has the capacity to establish microvascular networks. This review predominantly presents and discusses recent advancements in template design, construction methods, and potential applications of microfluidic vascular models based on polydimethylsiloxane (PDMS) soft lithography. Additionally, some refined methodologies addressing the limitations of conventional PDMS-based soft lithography techniques are also elaborated, which might hold profound importance in the field of vascular tissue engineering on microfluidic chips.
Collapse
Affiliation(s)
- Ran Wang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hangyu Zhang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shijun Li
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Peishi Yan
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
2
|
Arévalo-Martinez M, Ede J, van der Have O, Ritsvall O, Zetterberg FR, Nilsson UJ, Leffler H, Holmberg J, Albinsson S. Myocardin related transcription factor and galectin-3 drive lipid accumulation in human blood vessels. Vascul Pharmacol 2024; 156:107383. [PMID: 38830455 DOI: 10.1016/j.vph.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Diabetes and hypertension are important risk factors for vascular disease, including atherosclerosis. A driving factor in this process is lipid accumulation in smooth muscle cells of the vascular wall. The glucose- and mechano-sensitive transcriptional coactivator, myocardin-related transcription factor A (MRTF-A/MKL1) can promote lipid accumulation in cultured human smooth muscle cells and contribute to the formation of smooth muscle-derived foam cells. The purpose of this study was to determine if intact human blood vessels ex vivo can be used to evaluate lipid accumulation in the vascular wall, and if this process is dependent on MRTF and/or galectin-3/LGALS3. Galectin-3 is an early marker of smooth muscle transdifferentiation and a potential mediator for foam cell formation and atherosclerosis. APPROACH AND RESULTS Human mammary arteries and saphenous veins were exposed to altered cholesterol and glucose levels in an organ culture model. Accumulation of lipids, quantified by Oil Red O, was increased by cholesterol loading and elevated glucose concentrations. Pharmacological inhibition of MRTF with CCG-203971 decreased lipid accumulation, whereas adenoviral-mediated overexpression of MRTF-A had the opposite effect. Cholesterol-induced expression of galectin-3 was decreased after inhibition of MRTF. Importantly, pharmacological inhibition of galectin-3 with GB1107 reduced lipid accumulation in the vascular wall after cholesterol loading. CONCLUSION Ex vivo organ culture of human arteries and veins can be used to evaluate lipid accumulation in the intact vascular wall, as well as adenoviral transduction and pharmacological inhibition. Although MRTF and galectin-3 may have beneficial, anti-inflammatory effects under certain circumstances, our results, which demonstrate a significant decrease in lipid accumulation, support further evaluation of MRTF- and galectin-3-inhibitors for therapeutic intervention against atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Marycarmen Arévalo-Martinez
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Jacob Ede
- Department of Clinical Sciences Lund, Department of Cardiothoracic Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Oscar van der Have
- Vessel Wall Biology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Olivia Ritsvall
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden; Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Johan Holmberg
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Sebastian Albinsson
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden.
| |
Collapse
|
3
|
MRTF specifies a muscle-like contractile module in Porifera. Nat Commun 2022; 13:4134. [PMID: 35840552 PMCID: PMC9287330 DOI: 10.1038/s41467-022-31756-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-based movement is a hallmark of animal biology, but the evolutionary origins of myocytes are unknown. Although believed to lack muscles, sponges (Porifera) are capable of coordinated whole-body contractions that purge debris from internal water canals. This behavior has been observed for decades, but their contractile tissues remain uncharacterized with respect to their ultrastructure, regulation, and development. We examine the sponge Ephydatia muelleri and find tissue-wide organization of a contractile module composed of actin, striated-muscle myosin II, and transgelin, and that contractions are regulated by the release of internal Ca2+ stores upstream of the myosin-light-chain-kinase (MLCK) pathway. The development of this contractile module appears to involve myocardin-related transcription factor (MRTF) as part of an environmentally inducible transcriptional complex that also functions in muscle development, plasticity, and regeneration. As an actin-regulated force-sensor, MRTF-activity offers a mechanism for how the contractile tissues that line water canals can dynamically remodel in response to flow and can re-form normally from stem-cells in the absence of the intrinsic spatial cues typical of animal embryogenesis. We conclude that the contractile module of sponge tissues shares elements of homology with contractile tissues in other animals, including muscles, indicating descent from a common, multifunctional tissue in the animal stem-lineage. Myocytes are a key cell type that enable animal movement, but their evolutionary origins remain unclear. Colgren and Nichols describe molecular and functional similarities between a contractile module in tissues of a sponge and muscle tissues in other animals, indicating a common evolutionary origin.
Collapse
|
4
|
Liu L, Bankell E, Rippe C, Morén B, Stenkula KG, Nilsson BO, Swärd K. Cell Type Dependent Suppression of Inflammatory Mediators by Myocardin Related Transcription Factors. Front Physiol 2021; 12:732564. [PMID: 34671275 PMCID: PMC8521029 DOI: 10.3389/fphys.2021.732564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardin related transcription factors (MRTFs: MYOCD/myocardin, MRTF-A, and MRTF-B) play a key role in smooth muscle cell differentiation by activating contractile genes. In atherosclerosis, MRTF levels change, and most notable is a fall of MYOCD. Previous work described anti-inflammatory properties of MRTF-A and MYOCD, occurring through RelA binding, suggesting that MYOCD reduction could contribute to vascular inflammation. Recent studies have muddled this picture showing that MRTFs may show both anti- and pro-inflammatory properties, but the basis of these discrepancies remain unclear. Moreover, the impact of MRTFs on inflammatory signaling pathways in tissues relevant to human arterial disease is uncertain. The current work aimed to address these issues. RNA-sequencing after forced expression of myocardin in human coronary artery smooth muscle cells (hCASMCs) showed reduction of pro-inflammatory transcripts, including CCL2, CXCL8, IL6, and IL1B. Side-by-side comparison of MYOCD, MRTF-A, and MRTF-B in hCASMCs, showed that the anti-inflammatory impact was shared among MRTFs. Correlation analyses using human arterial transcriptomic datasets revealed negative correlations between MYOCD, MRTFA, and SRF, on the one hand, and the inflammatory transcripts, on the other. A pro-inflammatory drive from lipopolysaccharide, did not change the size of the suppressive effect of MRTF-A in hCASMCs on either mRNA or protein levels. To examine cell type-dependence, we compared the anti-inflammatory impact in hCASMCs, with that in human bladder SMCs, in endothelial cells, and in monocytes (THP-1 cells). Surprisingly, little anti-inflammatory activity was seen in endothelial cells and monocytes, and in bladder SMCs, MRTF-A was pro-inflammatory. CXCL8, IL6, and IL1B were increased by the MRTF-SRF inhibitor CCG-1423 and by MRTF-A silencing in hCASMCs, but depolymerization of actin, known to inhibit MRTF activity, had no stimulatory effect, an exception being IL1B. Co-immunoprecipitation supported binding of MRTF-A to RelA, supporting sequestration of this important pro-inflammatory mediator as a mechanism. Dexamethasone treatment and silencing of RelA (by 76 ± 1%) however only eliminated a fraction of the MRTF-A effect (≈25%), suggesting mechanisms beyond RelA binding. Indeed, SRF silencing suggested that MRTF-A suppression of IL1B and CXCL8 depends on SRF. This work thus supports an anti-inflammatory impact of MRTF-SRF signaling in hCASMCs and in intact human arteries, but not in several other cell types.
Collapse
Affiliation(s)
- Li Liu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | | | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | | | | | - Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|