1
|
Dabravolski SA, Churov AV, Elizova NV, Ravani AL, Karimova AE, Sukhorukov VN, Orekhov AN. Association between atherosclerosis and the development of multi-organ pathologies. SAGE Open Med 2024; 12:20503121241310013. [PMID: 39734765 PMCID: PMC11672402 DOI: 10.1177/20503121241310013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/31/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease affecting the vascular system, characterised by the accumulation of modified lipoproteins, immune cell aggregation and the development of fibrous tissue within blood vessel walls. As atherosclerosis impacts blood vessels, its adverse effects may manifest across various tissues and organs. In this review, we examine the association of atherosclerosis with Alzheimer's disease, stroke, pancreatic and thyroid dysfunction, kidney stones and chronic kidney diseases. In several cases, the reciprocal causative effect of these diseases on the progression of atherosclerosis is also discussed. Particular attention is given to common risk factors, biomarkers and identified molecular mechanisms linking the pathophysiology of atherosclerosis to the dysfunction of multiple tissues and organs. Understanding the role of atherosclerosis and its associated microenvironmental conditions in the pathology of multi-organ disorders may unveil novel therapeutic avenues for the prevention and treatment of cardiovascular and associated diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Pirogov Russian National Research Medical University, Russia Gerontology Clinical Research Centre, Institute on Ageing Research, Russian Federation, Moscow, Russia
| | | | | | - Amina E Karimova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute of Human Morphology, Petrovsky Russian National Centre of Surgery, Moscow, Russia
| | | |
Collapse
|
2
|
Zhu B, Gupta K, Cui K, Wang B, Malovichko MV, Han X, Li K, Wu H, Arulsamy KS, Singh B, Gao J, Wong S, Cowan DB, Wang D, Biddinger S, Srivastava S, Shi J, Chen K, Chen H. Targeting Liver Epsins Ameliorates Dyslipidemia in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609742. [PMID: 39253478 PMCID: PMC11383288 DOI: 10.1101/2024.08.26.609742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rationale Low density cholesterol receptor (LDLR) in the liver is critical for the clearance of low-density lipoprotein cholesterol (LDL-C) in the blood. In atherogenic conditions, proprotein convertase subtilisin/kexin 9 (PCSK9) secreted by the liver, in a nonenzymatic fashion, binds to LDLR on the surface of hepatocytes, preventing its recycling and enhancing its degradation in lysosomes, resulting in reduced LDL-C clearance. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution of circulating LDL-C to atherosclerosis, we hypothesize that liver epsins promote atherosclerosis by controlling LDLR endocytosis and degradation. Objective We will determine the role of liver epsins in promoting PCSK9-mediated LDLR degradation and hindering LDL-C clearance to propel atherosclerosis. Methods and Results We generated double knockout mice in which both paralogs of epsins, namely, epsin-1 and epsin-2, are specifically deleted in the liver (Liver-DKO) on an ApoE -/- background. We discovered that western diet (WD)-induced atherogenesis was greatly inhibited, along with diminished blood cholesterol and triglyceride levels. Mechanistically, using scRNA-seq analysis on cells isolated from the livers of ApoE-/- and ApoE-/- /Liver-DKO mice on WD, we found lipogenic Alb hi hepatocytes to glycogenic HNF4α hi hepatocytes transition in ApoE-/- /Liver-DKO. Subsequently, gene ontology analysis of hepatocyte-derived data revealed elevated pathways involved in LDL particle clearance and very-low-density lipoprotein (VLDL) particle clearance under WD treatment in ApoE-/- /Liver-DKO, which was coupled with diminished plasma LDL-C levels. Further analysis using the MEBOCOST algorithm revealed enhanced communication score between LDLR and cholesterol, suggesting elevated LDL-C clearance in the ApoE-/- Liver-DKO mice. In addition, we showed that loss of epsins in the liver upregulates of LDLR protein level. We further showed that epsins bind LDLR via the ubiquitin-interacting motif (UIM), and PCSK9-triggered LDLR degradation was abolished by depletion of epsins, preventing atheroma progression. Finally, our therapeutic strategy, which involved targeting liver epsins with nanoparticle-encapsulated siRNAs, was highly efficacious at inhibiting dyslipidemia and impeding atherosclerosis. Conclusions Liver epsins promote atherogenesis by mediating PCSK9-triggered degradation of LDLR, thus raising the circulating LDL-C levels. Targeting epsins in the liver may serve as a novel therapeutic strategy to treat atherosclerosis by suppression of PCSK9-mediated LDLR degradation.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Krishan Gupta
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Marina V Malovichko
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Xiangfei Han
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kulandai Samy Arulsamy
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Jianing Gao
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Dazhi Wang
- College of Medicine Molecular Pharmacology, University of South Florida, Tampa, FL, United States
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Jinjun Shi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Sandireddy R, Sakthivel S, Gupta P, Behari J, Tripathi M, Singh BK. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front Cell Dev Biol 2024; 12:1433857. [PMID: 39086662 PMCID: PMC11289778 DOI: 10.3389/fcell.2024.1433857] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
4
|
Janota B, Szymanek B. The Influence of Diet and Its Components on the Development and Prevention of Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:1030. [PMID: 38473387 DOI: 10.3390/cancers16051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is diagnosed annually in nearly a million people worldwide, with approximately half of them being diagnosed at an advanced stage of the disease. Non-infectious risk factors for the development of HCC include an unbalanced lifestyle, including poor dietary choices characterized by a low intake of antioxidants, such as vitamins E and C, selenium, and polyphenols, as well as an excessive consumption of energy and harmful substances. Repeated bad dietary choices that contribute to an unbalanced lifestyle lead to the accumulation of fatty substances in the liver and to it entering an inflammatory state, which, without intervention, results in cirrhosis, the main cause of HCC. This review of the English language literature aims to present the food components that, when included in the daily diet, reduce the risk of developing HCC, as well as identifying foods that may have a carcinogenic effect on liver cells.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | | |
Collapse
|