1
|
Schulte M, Jochmann MA, Gehrke T, Thom A, Ricken T, Denecke M, Schmidt TC. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:281-288. [PMID: 28811145 DOI: 10.1016/j.wasman.2017.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO2) and reactant (CH4) by CO2/CH4-ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO2/CH4-ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO2/CH4-ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO2/CH4-ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH4 loads of 35-65gm-2d-1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO2/CH4-ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well.
Collapse
Affiliation(s)
- Marcel Schulte
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Tobias Gehrke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Andrea Thom
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Tim Ricken
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Martin Denecke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
2
|
Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, Song L. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:369-377. [PMID: 28532620 DOI: 10.1016/j.wasman.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Real-time CH4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH4 and CO2) and O2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH4 and CO2) and O2 data points covering 32 steady states of CH4 oxidation with 32 different CH4 fluxes (0.2-125mol·m-2·d-1). The kinetics of CH4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH4-O2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH4 concentrations. The quality of the fit (R2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH4 oxidation simulations. MiSeq pyrosequencing indicated that CH4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis).
Collapse
Affiliation(s)
- Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Faculty of Urban Construction and Environment Engineering, Chongqing University, Chongqing 400045, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Faculty of Urban Construction and Environment Engineering, Chongqing University, Chongqing 400045, China.
| | - Yanhui Gao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Faculty of Urban Construction and Environment Engineering, Chongqing University, Chongqing 400045, China
| | - Zhi He
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xuya Peng
- Faculty of Urban Construction and Environment Engineering, Chongqing University, Chongqing 400045, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (CAS), Chongqing 400714, China.
| |
Collapse
|
3
|
Monger GR, Duncan CM, Brusseau ML. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone. WATER, AIR, AND SOIL POLLUTION 2014; 225:2226. [PMID: 26380532 PMCID: PMC4568564 DOI: 10.1007/s11270-014-2226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation.
Collapse
Affiliation(s)
- Gregg R. Monger
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721
| | - Candice Morrison Duncan
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721
| | - Mark L. Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721
- Hydrology and Water Resources Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721
| |
Collapse
|
4
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Schroth MH, Eugster W, Gómez KE, Gonzalez-Gil G, Niklaus PA, Oester P. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:879-889. [PMID: 22143049 DOI: 10.1016/j.wasman.2011.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500μmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380μmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil.
Collapse
Affiliation(s)
- M H Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
6
|
Henneberger R, Lüke C, Mosberger L, Schroth MH. Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 2012; 81:52-65. [PMID: 22172054 DOI: 10.1111/j.1574-6941.2011.01278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
7
|
Gebert J, Rachor I, Gröngröft A, Pfeiffer EM. Temporal variability of soil gas composition in landfill covers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:935-945. [PMID: 21074982 DOI: 10.1016/j.wasman.2010.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/07/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO(2) to CH(4) were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil.
Collapse
Affiliation(s)
- Julia Gebert
- Institute of Soil Science, University of Hamburg, Allende-Platz 2, D 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|