1
|
Wongsirichot P. Pilot scale polyhydroxyalkanoates biopolymer production using pure cultures: current status and future opportunities. Crit Rev Biotechnol 2025; 45:887-903. [PMID: 39428339 DOI: 10.1080/07388551.2024.2409112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
The development and commercialization of bio-based and biodegradable polyhydroxyalkanoates (PHAs) biopolymers could be crucial for the transition toward a sustainable circular economy. However, despite potential traditional and novel applications in the packaging, textiles, agriculture, automotive, electronics, and biomedical industries, the commercialization of PHAs is limited by their current market competitiveness. This review provides the first critical assessment of the current pure culture pilot-scale PHA literature, which could be crucial in translating promising laboratory-scale developments into industrial-scale commercial PHA production. It will also complement reviews of mixed microbial cultures currently dominating pilot-scale PHA literature. Pure culture fermentations could provide advantages, such as ease of characterizing microbial producers' behavior, higher PHA productivities, and better alignment with existing PHA commercialization and industrial biotechnology approaches. Key aspects, including producer organisms, fermentation volumes and schemes, control schemes, optimization, and properties of the polymers produced, are discussed in-depth, to elucidate important trends, achievements, and knowledge gaps. Furthermore, specific ways for future pilot-scale studies to help address current PHA commercialization challenges are also identified. The insights, and recommendations provided will be extremely beneficial for the future development of PHA production, at both pilot and commercial scales, whilst also being beneficial to the production of other microbial polymers and industrial biotechnology as a whole.
Collapse
Affiliation(s)
- Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Morando-Grijalva CA, Ramos-Díaz A, Cabrera-Ramirez AH, Cuevas-Bernardino JC, Pech-Cohuo SC, Kú-González AF, Cano-Sosa J, Herrera-Pool IE, Valdivia-Rivera S, Ayora-Talavera T, Pacheco N. Isolation, Identification and Screening of Plastic-Degrading Microorganisms: Qualitative and Structural Effects on Poly(Butylene Succinate) (PBS) Films. Polymers (Basel) 2025; 17:1128. [PMID: 40284393 PMCID: PMC12031546 DOI: 10.3390/polym17081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
(1) Background: Plastic contamination is on the rise, despite ongoing research focused on alternatives such as bioplastics. However, most bioplastics require specific conditions to biodegrade. A promising alternative involves using microorganisms isolated from landfill soils that have demonstrated the ability to degrade plastic materials. (2) Methods: Soil samples were collected, and bacteria were isolated, characterized, and molecularly identified. Their degradative capacity was evaluated using the zone of clearing method, while their qualitative and structural degradative activity was assessed in a liquid medium on poly(butylene succinate) (PBS) films prepared by the cast method. (3) Results: Three strains-Bacillus cereus CHU4R, Acinetobacter baumannii YUCAN, and Pseudomonas otitidis YUC44-were selected. These strains exhibited the ability to cause severe damage to the microscopic surface of the films, attack the ester bonds within the PBS structure, and degrade lower-weight PBS molecules during the process. (4) Conclusions: this study represents the first report of strains isolated in Yucatán with plastic degradation activity. The microorganisms demonstrated the capacity to degrade PBS films by causing surface and structural damage at the molecular level. These findings suggest that the strains could be applied as an alternative in plastic biodegradation.
Collapse
Affiliation(s)
- Cristina América Morando-Grijalva
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Ana Ramos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Angel H. Cabrera-Ramirez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Juan Carlos Cuevas-Bernardino
- SECIHTI-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (J.C.C.-B.); (S.V.-R.)
| | - Soledad Cecilia Pech-Cohuo
- Departamento de Ingeniería en Robótica Computacional, Universidad Politécnica de Yucatán, Tablaje Catastral 7193, Carretera, Merida-Tetiz Km 4.5, Merida 97357, Yucatan, Mexico;
| | | | - Julia Cano-Sosa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Iván Emanuel Herrera-Pool
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Sergio Valdivia-Rivera
- SECIHTI-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (J.C.C.-B.); (S.V.-R.)
| | - Teresa Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera, Sierra Papacal-Chuburna, Chuburna, Merida 97302, Yucatan, Mexico; (C.A.M.-G.); (A.R.-D.); (A.H.C.-R.); (J.C.-S.); (I.E.H.-P.); (T.A.-T.)
| |
Collapse
|
3
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
4
|
Khamplod T, Wongsirichot P, Winterburn J. Production of polyhydroxyalkanoates from hydrolysed rapeseed meal by Haloferax mediterranei. BIORESOURCE TECHNOLOGY 2023; 386:129541. [PMID: 37499923 DOI: 10.1016/j.biortech.2023.129541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Rapeseed meal (RSM) hydrolysate is a potential low-cost feedstock for the production of polyhydroxyalkanoates (PHAs) by the archaea, Haloferax mediterranei. Acidic and enzymatic hydrolysis were carried out to compare effectiveness. Enzymatic hydrolysis is more effective than acidic hydrolysis for fermentation substrate leading to increased PHA productivity. H. mediterranei didn't grow or produce PHA when acid hydrolysed RSM medium was present in proportions greater than 25% (vol.), potentially due to the effect of inhibitors such as furfural, hydroxymethylfurfural (HMF), etc. However, H. mediterranei was able to grow and produce PHA when using enzymatically hydrolysed RSM medium. The maximum PHA concentration of 0.512 g/L was found at 75% (vol.) in enzymatic RSM hydrolysate medium. The biopolymer obtained had improved thermal and mechanical properties compared to PHB homopolymer. RSM's potential as a low-cost alternative feedstock for improved PHA production under non-sterile conditions was successfully demonstrated, and its usage should be further explored.
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - Phavit Wongsirichot
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - James Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
5
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
6
|
Che L, Jin W, Zhou X, Han W, Chen Y, Chen C, Jiang G. Current status and future perspectives on the biological production of polyhydroxyalkanoates. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Che
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wenbiao Jin
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Xu Zhou
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wei Han
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Yidi Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
7
|
Yang Z, Huang Z, Cao L. Biotransformation technology and high-value application of rapeseed meal: a review. BIORESOUR BIOPROCESS 2022; 9:103. [PMID: 38647572 PMCID: PMC10991624 DOI: 10.1186/s40643-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Rapeseed meal (RSM) is an agro-industrial residue of increased functional biological value that contains high-quality proteins for animal feed. Due to the presence of antinutritional factors and immature development technology, RSM is currently used as a limited feed additive and in other relatively low-value applications. With increasing emphasis on green and sustainable industrial development and the added value of agro-industrial residues, considerable attention has been directed to the removal of antinutritional factors from RSM using high-efficiency, environment-friendly, and cost-effective biotechnology. Similarly, the high-value biotransformations of RSM have been the focus of research programmes to improve utilization rate. In this review, we introduce the sources, the nutrient and antinutrient content of RSM, and emphasize improvements on RSM feed quality using biological methods and its biotransformation applications.
Collapse
Affiliation(s)
- Zhengfeng Yang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- College of Life Sciences, Yunnan Normal University, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.
| | - Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| |
Collapse
|
8
|
Szacherska K, Moraczewski K, Rytlewski P, Czaplicki S, Ciesielski S, Oleskowicz-Popiel P, Mozejko-Ciesielska J. Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Sci Rep 2022; 12:7263. [PMID: 35508573 PMCID: PMC9068790 DOI: 10.1038/s41598-022-11114-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to evaluate an effect of short and medium chain carboxylic acids (CAs) rich stream derived from acidogenic mixed culture fermentation of acid whey on polyhydroxyalkanoates (PHAs) synthesis by Paracoccus homiensis and compare it with the impact of individual synthetic CAs. The obtained results confirmed that the analyzed bacterium is able to metabolize synthetic CAs as the only carbon sources in the growth medium with maximum PHAs production yields of 26% of cell dry mass (CDM). The replacement of the individual CAs by a CAs-rich residual stream was found to be beneficial for the Paracoccus homiensis growth. The highest biomass concentration reached about 2.5 g/L with PHAs content of 17% of CDM. The purified PHAs were identified as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by applying gas chromatography coupled with mass spectrometry, Fourier transform infrared spectroscopic spectra and UV-Vis spectra. Furthermore, a differential scanning calorimetric, thermogravimetric and water contact angle analysis proved that the extracted copolymers have useful properties. The obtained data are promising in the perspective of developing a microbial PHAs production as a part of an integrated valorization process of high CAs content waste-derived streams.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85-064, Bydgoszcz, Poland
| | - Piotr Rytlewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85-064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965, Poznan, Poland
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
9
|
Wongsirichot P, Gonzalez-Miquel M, Winterburn J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Liu H, Kumar V, Jia L, Sarsaiya S, Kumar D, Juneja A, Zhang Z, Sindhu R, Binod P, Bhatia SK, Awasthi MK. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. CHEMOSPHERE 2021; 284:131427. [PMID: 34323796 DOI: 10.1016/j.chemosphere.2021.131427] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Apple pomace, the residue which is left out after processing of apple serves as a potential carbon source for the production of biopolymer, PHA (poly-hydroxyalkanoates). It is rich in carbohydrates, fibers and polyphenols. Utilization of these waste resources has dual societal benefit-waste management and conversion of waste to an eco-friendly biopolymer. This will lower the overall economics of the process. A major limitation for the commercialization of biopolymer in comparison with petroleum derived polymer is the high cost. This article gives an overview of valorization of apple pomace for the production of biopolymer, various strategies adopted, limitations as well as future perspectives.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Linjing Jia
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL, 61801, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
11
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
12
|
Wongsirichot P, Muanruksa P, Kaewkannetra P, Winterburn J. Comprehensive optimization of tropical biomass hydrolysis for nitrogen-limited medium-chain polyhydroxyalkanoate synthesis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 128:221-231. [PMID: 34000692 DOI: 10.1016/j.wasman.2021.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Expanding the use of tropical biomass wastes for nitrogen-limited fermentation was investigated, specifically, the production of medium chain length polyhydroxyalkanoates. Comprehensive central composite design was conducted to assess pH, temperature, biomass solid loading, cellulase loading and amylase loading and their impact on the hydrolysis of palm, coconut and cassava wastes. Glucose yields of 33.3, 31.7 and 79.0% wt. with respect to total glucose were found for palm, coconut and cassava, respectively. Importantly, the impact on the total nitrogen derived during enzymatic hydrolysis of these tropical biomass was described for the first time. The level of nitrogen needs to be properly controlled as high nitrogen would result in low carbon to nitrogen ratio leading to low polyhydroxyalkanoates accumulation, but low nitrogen would hinder growth of the biopolymer producer. Maximum hydrolysate nitrogen, were 1.80, 1.55 and 0.871 g/l for palm, coconut and cassava, respectively. Using the surface responses, biomass media designed for high carbon-to-nitrogen were produced and validated using Pseudomonas putida. Low glucose-carbon to nitrogen were found for palm and coconut after scale-up, leading to the majority of their polyhydroxyalkanoates not being biomass-derived. However, cassava-derived biopolymers were successfully accumulated at 9.01 and 7.13% wt. for total medium chain length polyhydroxyalkanoates and 10-carbon polyhydroxyalkanoates, respectively. This study provides an important foundation for the expansion of tropical biomass wastes for biopolymer production and other nitrogen-limited applications in general.
Collapse
Affiliation(s)
- Phavit Wongsirichot
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Papasanee Muanruksa
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Mitraphap Road, Meuang, Khon kaen 40002, Thailand
| | - Pakawadee Kaewkannetra
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Mitraphap Road, Meuang, Khon kaen 40002, Thailand
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|