1
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Meignanalakshmi S, Legadevi R. Recycling slaughterhouse waste rumen fluid for biodegradable bioplastic production from Bacillus tequilensis KU 844284. ENVIRONMENTAL TECHNOLOGY 2025:1-16. [PMID: 39985814 DOI: 10.1080/09593330.2025.2462794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/19/2025] [Indexed: 02/24/2025]
Abstract
In the present study, bioplastic - producing Bacillus tequilensis, a gram-positive rod, was isolated from slaughterhouse waste rumen fluid. Polyhydroxy butyrate (PHB) was produced from B. tequilensis using nitrogen-deficient Minimal medium (NDMM) and slaughterhouse waste rumen fluid (SHWRF). B. tequilensis produced PHB 4.51 ± 0.06 g/L and 1.60 ± 0.04 g/L from SHWRF and NDMM medium, respectively. Thermal stability, biodegradability, and biocompatibility were among the desirable properties of the PHB that were confirmed by FTIR, XRD, TGA, and DSC analysis. The PHB produced by using the SHWRF medium was degraded at a rate of 60.30% in 45 days. The in vitro cytotoxicity assay using the 3T3-L1 fibroblast cell line demonstrated that it is not harmful. This is the first report of bioplastic production by B.tequilensis using slaughterhouse waste rumen fluid. Rumen fluid from slaughterhouse waste can be recycled to produce biodegradable bioplastic.
Collapse
|
3
|
Rudnyckyj S, Kucheryavskiy S, Chaturvedi T, Thomsen MH. Organic waste and beechwood cellulose blend saccharification and validation of hydrolysates by fermentation. Appl Microbiol Biotechnol 2024; 108:517. [PMID: 39540966 PMCID: PMC11564323 DOI: 10.1007/s00253-024-13349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study demonstrates the sustainable advancement of fermentation media by blending the organic fraction of municipal solid waste (OFMSW) with organosolv beechwood cellulose. Investigations examined the effects of enzyme dosages and OFMSW integration into organosolv beechwood cellulose on sugar yield. The findings indicate that OFMSW inclusion and Cellic® CTec3 dosage significantly influence hydrolysis across two different batches of beechwood cellulose. Experimental data showed that OFMSW inclusion levels of 35% and 45% (w/w) produced sugar levels comparable to pure beechwood cellulose, achieving 58% to 68% (w/w) saccharification with sugar concentrations of 44 to 46 g/L. This highlights OFMSW's potential as a buffer substitute during the enzymatic conversion of organosolv cellulose. The resulting sugar-rich hydrolysates, derived from OFMSW-cellulose blends and pure cellulose, were evaluated for ethanol and cell biomass production using Saccharomyces cerevisiae and Mucor indicus, yielding 30 g of ethanol/L hydrolysate. Furthermore, OFMSW inclusion in beechwood cellulose proved to be an excellent alternative to synthetic nitrogen agents for S. cerevisiae cell production, reaching 12.2 g of biomass/L and surpassing the biomass concentration from cultivation on cellulose hydrolysate with nitrogen supplementation by threefold. However, M. indicus did not grow in the OFMSW-cellulose blend, suggesting that the inhibitory compounds of OFMSW may be a bottleneck in the proposed process. The present study demonstrates the benefits of incorporating OFMSW into cellulose material, as it enhances both cost-effectiveness and sustainability. This is attributed to the natural buffering properties and nitrogen content of OFMSW, which reduces the need for synthetic agents in fermentation-based lignocellulose biorefineries. KEY POINTS: • OFMSW inclusion significantly influences beechwood cellulose saccharification. • OFMSW could be an excellent alternative for synthetic agents in biorefinery. • S. cerevisiae achieved higher biomass growth on OFMSW/cellulose mix compared to YPD.
Collapse
Affiliation(s)
- Stanislav Rudnyckyj
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| | - Sergey Kucheryavskiy
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Tanmay Chaturvedi
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | |
Collapse
|
4
|
Zhang H, Zhang W, Wang S, Zhu Z, Dong H. Microbial composition play the leading role in volatile fatty acid production in the fermentation of different scale of corn stover with rumen fluid. Front Bioeng Biotechnol 2024; 11:1275454. [PMID: 38239916 PMCID: PMC10794738 DOI: 10.3389/fbioe.2023.1275454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rumen fluid is a natural and green biocatalyst that can efficiently degrade biomass into volatile fatty acid (VFA) used to produce value-added materials. But the essence of high degradation efficiency in the rumen has not been fully analyzed. This study investigated the contribution of substrate structure and microbial composition to volatile fatty acid production in the fermentation of corn stover. The ball milled corn stover were innovatively applied to ferment with the rumen fluid collected at different digestion times. Exogeneous cellulase was also added to the ruminal fermentation to further reveal the inner mechanism. With prolonged digestion time, the microbial community relative abundance levels of Bacteroidetes and Firmicutes increased from 29.98% to 72.74% and decreased from 51.76% to 22.11%, respectively. The highest VFA production of the corn stover was achieved via treatment with the rumen fluid collected at 24 h which was up to 9508 mg/L. The ball milled corn stover achieved high VFA production because of the more accessible substrate structure. The application of exogenous cellulase has no significant influence to the ruminal fermentation. The microbial community abundance contributed more to the VFA production compared with the substrate structures.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqin Zhang
- China Huadian Engineering Co., Ltd., Beijing, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167243. [PMID: 37741416 DOI: 10.1016/j.scitotenv.2023.167243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Substituting synthetic plastics with bioplastics, primarily due to their inherent biodegradable properties, represents a highly effective strategy to address the current global issue of plastic waste accumulation in the environment. Advances in bioplastic research have led to the development of materials with improved properties, enabling their use in a wide range of applications in major commercial sectors. Bioplastics are derived from various natural sources such as plants, animals, and microorganisms. Polyhydroxyalkanoate (PHA), a biopolymer synthesized by bacteria through microbial fermentation, exhibits physicochemical and mechanical characteristics comparable to those of synthetic plastics. In response to the growing demand for these environmentally friendly plastics, researchers are actively investigating various cleaner production methods, including modification or derivatization of existing molecules for enhanced properties and new-generation applications to expand their market share in the coming decades. By 2026, the commercial manufacturing capacity of bioplastics is projected to reach 7.6 million tonnes, with Europe currently holding a significant market share of 43.5 %. Bioplastics are predominantly utilized in the packaging industry, indicating a strong focus of their application in the sector. With the anticipated rise in bioplastic waste volume over the next few decades, it is crucial to comprehend their fate in various environments to evaluate the overall environmental impact. Ensuring their complete biodegradation involves optimizing waste management strategies and appropriate disposal within these facilities. Future research efforts should prioritize exploration of their end-of-life management and toxicity assessment of degradation products. These efforts are crucial to ensure the economic viability and environmental sustainability of bioplastics as alternatives to synthetic plastics.
Collapse
Affiliation(s)
- Anjaly P Thomas
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Vara Prasad Kasa
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Brajesh Kumar Dubey
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Ebrahimian F, Mohammadi A. Assessing the environmental footprints and material flow of 2,3-butanediol production in a wood-based biorefinery. BIORESOURCE TECHNOLOGY 2023; 387:129642. [PMID: 37558103 DOI: 10.1016/j.biortech.2023.129642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
This study aims to scrutinize and compare the environmental impacts of biobased 2,3-butanediol (BDO) and its fossil-based counterpart. BDO is a fundamental chemical in various industries, traditionally derived from petroleum sources. Wood residues, largely available in Nordic countries, are sustainable alternative feedstocks, offering potential environmental benefits. Material flow analysis followed by consequential life cycle assessment (LCA) were employed to quantify the potential environmental burdens associated with various biorefinery stages of wood-based BDO production. The findings indicated that refraining from wood combustion and, instead, utilizing wood in a biorefinery to produce BDO as the main product, with methane and fertilizer as coproducts from the waste residue, resulted in 125%, 52%, and 90% better environmental performance regarding human health, climate change, and resource scarcity, respectively, compared to fossil-based BDO production. The results offer valuable insights for technology developers and policymakers, empowering them to make informed decisions and support sustainable practices.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden.
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| |
Collapse
|
7
|
Rofeal M, Abdelmalek F, Pietrasik J. Sustainable Polyhydroxyalkanoate Production from Food Waste via Bacillus mycoides ICRI89: Enhanced 3D Printing with Poly (Methyl Methacrylate) Blend. Polymers (Basel) 2023; 15:4173. [PMID: 37896417 PMCID: PMC10610804 DOI: 10.3390/polym15204173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In view of implementing green technologies for bioplastic turning polices, novel durable feedstock for Bacillus mycoides ICRI89 used for efficient polyhydroxybutyrate (PHB) generation is proposed herein. First, two food waste (FW) pretreatment methods were compared, where the ultrasonication approach for 7 min was effective in easing the following enzymatic action. After treatment with a mixture of cellulase/amylases, an impressive 25.3 ± 0.22 g/L of glucose was liberated per 50 g of FW. Furthermore, a notable 2.11 ± 0.06 g/L PHB and 3.56 ± 0.11 g/L cell dry eight (CDW) over 120 h were generated, representing a productivity percentage of 59.3 wt% using 25% FW hydrolysate. The blend of polyhydroxybutyrate/poly (methyl methacrylate) (PHB/PMMA = 1:2) possessed the most satisfactory mechanical properties. For the first time, PHB was chemically crosslinked with PMMA using dicumyl peroxide (DCP), where a concentration of 0.3 wt% had a considerable effect on increasing the mechanical stability of the blend. FTIR analysis confirmed the molecular interaction between PHB and PMMA showing a modest expansion of the C=O stretching vibration at 1725 cm-1. The DCP-PHB/PMMA blend had significant thermal stability and biodegradation profiles comparable to those of the main constituent polymers. More importantly, a 3-Dimetional (3D) filament was successfully extruded with a diameter of 1.75 mm, where no blockages or air bubbles were noticed via SEM. A new PHB/PMMA "key of life" 3D model has been printed with a filling percentage of 60% and a short printing time of 19.2 min. To conclude, high-performance polymeric 3D models have been fabricated to meet the pressing demands for future applications of sustainable polymers.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| |
Collapse
|
8
|
Aghaali Z, Naghavi MR. Biotechnological Approaches for Enhancing Polyhydroxyalkanoates (PHAs) Production: Current and Future Perspectives. Curr Microbiol 2023; 80:345. [PMID: 37731015 DOI: 10.1007/s00284-023-03452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
The benefits of biotechnology are not limited to genetic engineering, but it also displays its great impact on industrial uses of crops (e.g., biodegradable plastics). Polyhydroxyalkanoates (PHAs) make a diverse class of bio-based and biodegradable polymers naturally synthesized by numerous microorganisms. However, several C3 and C4 plants have also been genetically engineered to produce PHAs. The highest production yield of PHAs was obtained with a well-known C3 plant, Arabidopsis thaliana, upto 40% of the dry weight of the leaf. This review summarizes all biotechnological mechanisms that have been adopted with the goal of increasing PHAs production in bacteria and plant species alike. Moreover, the possibility of using some methods that have not been applied in bioplastic science are discussed with special attention to plants. These include producing PHAs in transgenic hairy roots and cell suspension cultures, making transformed bacteria and plants via transposons, constructing an engineered metabolon, and overexpressing of phaP and the ABC operon concurrently. Taken together, that biotechnology will be highly beneficial for reducing plastic pollution through the implementation of biotechnological strategies is taken for granted.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetic and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
9
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Rabelo SC, Nakasu PYS, Scopel E, Araújo MF, Cardoso LH, Costa ACD. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128331. [PMID: 36403910 DOI: 10.1016/j.biortech.2022.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biorefineries integrate processes for the sustainable conversion of biomass into chemicals, materials, and bioenergy so that resources are optimized and effluents are minimized. Despite the vast potential of lignocellulosic biorefineries, their success depends heavily on effective, economically viable, and sustainable biomass fractionation. Although efficient, organosolv pretreatment still faces challenges that must be overcome for its widespread utilization, mainly related to solvent type and recycling, robustness regarding biomass type and integration of hemicellulose recovery and use. This review shows the recent advances and state-of-the-art of organosolv pretreatment, discussing the advances, such as the use of biobased solvents, whilst also shedding light on the perspectives of using the streams - cellulose, hemicellulose, and lignin - to produce biofuels and products of high added value. In addition, it presents an overview of the existing industrial implementations of organosolv processes and, lastly, shows the main scientific and industrial challenges and opportunities for this process.
Collapse
Affiliation(s)
- Sarita Cândida Rabelo
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil.
| | | | - Eupídio Scopel
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | - Luiz Henrique Cardoso
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil; Institute of Biosciences, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil
| | - Aline Carvalho da Costa
- Chemical Engineering School in State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Ebrahimian F, Denayer JFM, Mohammadi A, Khoshnevisan B, Karimi K. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 368:128316. [PMID: 36375700 DOI: 10.1016/j.biortech.2022.128316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) is a widely-available promising feedstock for biofuel production. However, the presence of different inhibitors originating from fruit and food/beverage wastes as well as recalcitrant lignocellulosic fractions hampers its bioconversion. This necessitates a pretreatment to augment the biodigestibility and fermentability of OFMSW. Hence, this review aims to provide the in-vogue inhibitory compound removal and pretreatment techniques that have been employed for efficient OFMSW conversion into biofuels, i.e., hydrogen, biogas, ethanol, and butanol. The techniques are compared concerning their mode of action, chemical and energy consumption, inhibitor formation and removal, economic feasibility, and environmental sustainability. This critique also reviews the existing knowledge gap and future perspectives for efficient OFMSW valorization. The insights provided pave the way toward developing energy-resilient cities while addressing environmental crises related to generating OFMSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Denmark
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
12
|
Ebrahimian F, Denayer JFM, Karimi K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. BIORESOURCE TECHNOLOGY 2022; 360:127609. [PMID: 35840021 DOI: 10.1016/j.biortech.2022.127609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Potato is the fourth most abundant crop harvested annually worldwide. Potato peel waste (PPW) is the main waste stream of potato-processing industries which is generated in large quantities and is a threat to the environment globally. However, owing to its compositional characteristics, availability, and zero cost, PPW is a renewable resource for the production of high-value bioproducts. Hence, this study provides a state-of-the-art overview of advancements in PPW valorization through biological and thermochemical conversions. PPW has a high potential for biofuel and biochemical generation through detoxification, pretreatment, hydrolysis, and fermentation. Moreover, many other valuable chemicals, including bio-oil, biochar, and biosorbents, can be produced via thermochemical conversions. However, several challenges are associated with the biological and thermochemical processing of PPW. The insights provided in this review pave the way toward a PPW-based biorefinery development, providing sustainable alternatives to fossil-based products and mitigating environmental concerns.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
13
|
Rathore P, Chakraborty S, Gupta M, Sarmah SP. Towards a sustainable organic waste supply chain: A comparison of centralized and decentralized systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115141. [PMID: 35525041 DOI: 10.1016/j.jenvman.2022.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Proper disposal of Municipal Solid (MSW) waste is an important issue as it causes land, air, and water pollution. Organic MSW provides a habitat environment to insects and often it spreads dangerous diseases. Major reasons identified behind this as the non-separation of MSW at the source and lack of facilities (bins) in the appropriate place for collection of wastes. The present study has proposed an integrated three-stage model to provide a solution to the problem of (i) allocation of the bin for waste collection, (ii) allocation and comparison of centralized and decentralized composting plants, and finally, (iii) vehicle routing for waste collection. The proposed generic model is applied to an Indian city, Bilaspur located in the state of Chhattisgarh. From the results, it is observed that the first stage model provides an optimal number of bins required and allocation of it at minimum cost. Taking it as input for the second stage model, it identifies the best locations for centralized and decentralized composting plants. The result also reveals that decentralized composting plants are more economical than centralized plants. Finally, the third stage of the model identifies the vehicle routing for the waste collection considering both centralized and decentralized plants to minimize the cost. Further, sensitivity analysis is carried out on collection rate and participation percentage parameters to draw additional insights for better management of MSW.
Collapse
Affiliation(s)
- Pradeep Rathore
- School of Business, Woxsen University, Hyderabad, 502345, India.
| | - Sayan Chakraborty
- ICFAI Business School Hyderabad, ICFAI Foundation for Higher Education, Hyderabad, 501203, India.
| | - Mihir Gupta
- Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - S P Sarmah
- Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
14
|
Shah AV, Singh A, Sabyasachi Mohanty S, Kumar Srivastava V, Varjani S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 349:126835. [PMID: 35150857 DOI: 10.1016/j.biortech.2022.126835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Waste generation is associated with numerous environmental consequences, making it a point of discussion in the environmental arena. Efforts have been made around the world to develop a systematic management approach coupled with a sustainable treatment technology to maximize resource utilization of organic solid waste. Biorefineries and bio-based products play a critical role in lowering total emissions and supporting energy systems. However, economic viability of biorefineries, on the other hand, is a stumbling hurdle to their commercialization. This communication provides a thorough study of the concept of biorefinery in waste management, as well as technological advancements in this field. In addition, the notion of techno-economic assessment, as well as challenges and future prospects have been covered. To find the most technologically and economically viable solution, further techno-economic study to the new context is required. Overall, this communication would assist decision-makers in identifying environmentally appropriate biorefinery solutions ahead of time.
Collapse
Affiliation(s)
- Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Aditi Singh
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Vijay Kumar Srivastava
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India.
| |
Collapse
|
15
|
Rajendran N, Han J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. BIORESOURCE TECHNOLOGY 2022; 348:126796. [PMID: 35121100 DOI: 10.1016/j.biortech.2022.126796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study focused on the techno-economic analysis of integrated polyhydroxyalkanoates (PHAs) and biofuels such as biohydrogen, bioethanol, and 2,3-butanediol production from food waste (FW). Based on previous literature studies, the integrated process was developed. The process plan produced 2.01 MT of PHAs, 0.29 MT of biohydrogen, 4.79 MT of bioethanol, and 6.79 MT of 2,3-butanediol per day, from 50 MT of FW. The process plan has a positive net present value of 4.47 M$, a 13.68% return on investment, a payback period of 7.31 yr, and an internal rate of return of 11.95%. Sensitivity analysis was used to examine the economic feasibility. The actual minimum selling price (MSP) of PHAs was 4.83 $/kg, and the lowest achievable MSP with 30% solid loading is 2.41 $/kg. The solid loading in the hydrolysis stage and the price of byproducts have a major impact on the economic factors and MSP of PHAs.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea.
| |
Collapse
|
16
|
Soltaninejad A, Jazini M, Karimi K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. CHEMOSPHERE 2022; 291:133003. [PMID: 34808197 DOI: 10.1016/j.chemosphere.2021.133003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Potato processing industries generate considerable amounts of residues, i.e., potato peel wastes (PPW). Valorization of PPW for bioethanol and biogas production via a biorefining process was investigated in this study. Organosolv pretreatment was performed on the PPW using 50-75% (v/v) ethanol solution at 120-180 °C with/without the presence of 1% (w/w) H2SO4 (as a catalyst). After the pretreatment, the solvent, i.e., ethanol, was recovered by distillation. Catalyzed organosolv pretreatment using 50% (v/v) ethanol at 120 °C followed by enzymatic hydrolysis resulted in a high hydrolysate yield of 539.8 g glucose/kg dry PPW that was successfully fermented to 224.2 g ethanol/kg dry PPW. To recover more energy, the liquid fraction of the pretreatment remained after solvent recovery and the unhydrolyzed solids that remained from the enzymatic hydrolysis were anaerobically digested. From each kg of dry PPW, the anaerobic digestion produced 57.9 L biomethane. Thus, the biorefinery comprising ethanolic organosolv pretreatment, solvent recovery, enzymatic hydrolysis, ethanolic fermentation, and anaerobic digestion of residues was produced 8112 kJ energy per kg of dry PPW.
Collapse
Affiliation(s)
- Ali Soltaninejad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammadhadi Jazini
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
17
|
Kandah MI. Production of Biodegradable Bioplastics filled with Jordanian Olive Tree Leaves. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Munther Issa Kandah
- Chemical Engineering Department Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 Jordan
| |
Collapse
|