1
|
Ugbune U, Edo GI, Avwenaghegha JO, Kpomah B, Aregbor O, Yousif E, Isoje EF, Akpoghelie PO, Igbuku UA, Owheruo JO, Essaghah AEA, Umar H, Ahmed DS. Effects of abattoir sludge on cyanide status of cassava effluent and cassava effluent contaminated soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:558. [PMID: 40234339 DOI: 10.1007/s10661-025-14013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Cassava cyanide effluent arising from cassava processing contaminate soil, leading to increased concentration of cyanide in soil and water, posing a risk to plant, aquatic life, and human health. Hence, the aim of this study is to investigate the impact of abattoir sludge on cyanide concentration of cassava effluent and soils receiving cassava effluent. In this study, soil samples were carried out following standard protocol. The concentration of nutrients after treatment revealed increase in nutrients level in 28 days of treatment as the weight of sludge dosage rises from 0 to 30%. However, as the remediation period progresses from 28 to 56 days, nutrients level of effluent and soil begins to drop, though nutrients level after the treatment period falls within the permissible range of habitat and agricultural soil after remediation period. The level of cyanide after treatment revealed a drop in concentration of effluent/soil as the dosage of sludge rises. In the same vein, concentration of effluent/soil cyanide also drop as the period of incubation increases from 28 to 56 days. The decrease in the level of cyanide is more pronounced in the 42nd and 56th days of treatment. The level of cyanide after the treatment is within the recommended range of soil used for habitat and agricultural soil. Therefore, abattoir sludge shows a promising greener biomass of choice for soil revitalizations and remediation of cyanide.
Collapse
Affiliation(s)
- Ufuoma Ugbune
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | | | - Bridget Kpomah
- Faculty of Science, Department of Chemistry, Delta State University, Abraka, Nigeria
| | - Okagbare Aregbor
- Faculty of Science, Department of Marine Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Faculty of Science, Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Joseph Oghenewogaga Owheruo
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
2
|
Turek-Szytow J, Michalska J, Dudło A, Krzemiński P, Ribeiro AL, Nowak B, Kobyłecki R, Zarzycki R, Golba S, Surmacz-Górska J. Soil application potential of post-sorbents produced by co-sorption of humic substances and nutrients from sludge anaerobic digestion reject water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122465. [PMID: 39332303 DOI: 10.1016/j.jenvman.2024.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/29/2024]
Abstract
This study introduces a novel soil conditioning approach using humic substances (HSs) and nutrients co-recovered from reject water from sewage sludge anaerobic digestion. For the first time, HSs and nutrients were simultaneously recovered through sorption on low-cost, environmentally inert materials: natural rock opoka (OP) and waste autoclaved aerated concrete (WAAC). This innovative application of OP and WAAC as carriers and delivery agents for soil-relevant substances offers potential for resource recovery and soil conditioning. Results indicate that the post-sorption opoka (PS-OP) and post-sorption waste autoclaved aerated concrete (PS-WAAC) effectively release retained HSs at 350-480 μg g⁻1 d⁻1, respectively. These materials also show potential as NPK fertilizers, releasing 280-430 μg g⁻1 d⁻1 N-NH₄⁺, 80-150 μg g⁻1 d⁻1 P-PO₄³⁻, and 270-350 μg g⁻1 d⁻1 K⁺. Additionally, PS-OP demonstrated promising fungicide properties, reducing P. diachenii growth by 31% at a concentration of 1 g L⁻1. A two-way ANOVA indicated that the effects of PS-OP and PS-WAAC on soil physicochemical and biological parameters varied with plant species. Both post-sorbents improved the quality of soil collected from sand mining area, increasing cation exchange capacity by 7%-85% and organic matter content by 10%-58%. They also enhanced the functional potential of soil microbial communities, increasing their metabolic activities by 23%-36% in soils sown with clover and by 33%-39% in soils sown with rapeseed. An opposite effect was observed in soils sown with sorghum, suggesting these amendments may not universally act as plant biostimulants. The effectiveness of these post-sorbents in enhancing plant growth varied depending on plant species and the mineral base of the post-sorbent. PS-OP increased the total length of clover and sorghum by 41% and 36%, and their fresh biomass by 82% and 80%, respectively. In turn, PS-WAAC increased the total length of clover and sorghum by 76% and 17%, and their fresh biomass by 29% and 15%, respectively. It was notably more effective than PS-OP for rapeseed. This study proposes a strategy to decrease reliance on non-renewable resources and costly sorbents while minimizing environmental impact. It shows that PS-OP and PS-WAAC can enhance soil quality, microbial activity, and plant growth. Given their origins, these amendments are recommended for soil remediation, particularly in degraded areas. Future research should focus on optimizing their application across various plant species to maximize effectiveness.
Collapse
Affiliation(s)
- Jolanta Turek-Szytow
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland; Centre for Biotechnology at Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Justyna Michalska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.
| | - Agnieszka Dudło
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Paweł Krzemiński
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Anne Luise Ribeiro
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Bożena Nowak
- Institute of Biology, Biotechnology and Environmental protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Joanna Surmacz-Górska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Ozer H, Ozdemir N, Ates A, Koklu R, Ozturk Erdem S, Ozdemir S. Circular Utilization of Coffee Grounds as a Bio-Nutrient through Microbial Transformation for Leafy Vegetables. Life (Basel) 2024; 14:1299. [PMID: 39459599 PMCID: PMC11508985 DOI: 10.3390/life14101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the production of bio-nutrients from bioactive compound-rich spent coffee grounds (SCG) and biochar (BC) through composting after inoculation with a biological agent and its impact on the growth performance of garden cress and spinach. The SCG was composted with six doses of BC (0, 5, 10, 15, 20, and 25%). The compost with 10% BC exhibited the best maturity, humification, and phytotoxicity index values of dissolved organic carbon (DOC), humification index (E4/E6), and germination index (GI). A metagenome analysis showed that compost starter enhanced the bacterial community's relative abundance, richness, and diversity in SCG and BC treatments. This improvement included increased Patescibacteria, which can break down noxious phenolic compounds found in SCG and BC. The BC enriched the compost with phosphorus and potassium while preserving the nitrogen. In plant growth experiments, the total chlorophyll content in compost-treated garden cress and spinach was 2.47 and 4.88 mg g-1, respectively, which was significantly greater (p ≤ 0.05) than in unfertilized plants and similar to the plants treated with traditional fertilizer. Overall, the results show that the compost of SCG + BC was well-suited for promoting the growth of garden cress and spinach, providing adequate nutrients as a fertilizer for these leafy vegetables.
Collapse
Affiliation(s)
- Hasan Ozer
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, Esentepe, 54187 Sakarya, Turkey; (H.O.); (R.K.); (S.O.)
| | - Naime Ozdemir
- Department of Horticulture, Faculty of Agriculture and Natural Science, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey; (N.O.); (S.O.E.)
| | - Asude Ates
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, Esentepe, 54187 Sakarya, Turkey; (H.O.); (R.K.); (S.O.)
| | - Rabia Koklu
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, Esentepe, 54187 Sakarya, Turkey; (H.O.); (R.K.); (S.O.)
| | - Sinem Ozturk Erdem
- Department of Horticulture, Faculty of Agriculture and Natural Science, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey; (N.O.); (S.O.E.)
| | - Saim Ozdemir
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, Esentepe, 54187 Sakarya, Turkey; (H.O.); (R.K.); (S.O.)
| |
Collapse
|
4
|
Wei C, Liu L, Yi W, Yu R, Xu Y, Zeng S. Characteristics of nutrients and heavy metals release from sewage sludge biochar produced by industrial-scale pyrolysis in the aquatic environment and its potential as a slow-release fertilizer and adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121871. [PMID: 39018844 DOI: 10.1016/j.jenvman.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To assess the application potential of sewage sludge biochar produced by industrial-scale pyrolysis (ISB), the release characteristics of nutrients (NH4+, PO43-, K, Ca, Mg and Fe) and heavy metals (Mn, Cu, Zn, Pb, Ni and Cr) were investigated. Their release amounts increased with decreasing initial pH and increasing solid-liquid ratios (RS-L) and temperature. The release types of NH4+, K, Mg, and Mn were diffusion/dissolution, while those of Cu, Zn, Pb, Ni, and Cr were diffusion/resorption. The release types of PO43- and Ca varied with initial pH and RS-L, respectively. The chemical actions played dominant roles in their release, while particle surface diffusion and liquid film diffusion determined the rates of diffusion and resorption phases, respectively. The release of NH4+, PO43-, K, Ca, Mg, Mn and Zn was a non-interfering, spontaneous (except PO43-), endothermic, and elevated randomness process. The release efficiency of NH4+, PO43- and K met the Chinese standard for slow-release fertilizers, while the total risk of ISB was low. The eutrophication and potential ecological risks of ISB were acceptable when the dose was less than 3 g L-1 and the initial pH was no lower than 3. In conclusion, ISB had potential as a slow-release fertilizer and adsorbent.
Collapse
Affiliation(s)
- Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Wei Yi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Ronghao Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China
| | - Si Zeng
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| |
Collapse
|
5
|
Verma LM, Kumar A, Kumar A, Singh G, Singh U, Chaudhary S, Kumar S, Sanwaria AR, Ingole PP, Sharma S. Green chemistry routed sugar press mud for (2D) ZnO nanostructure fabrication, mineral fortification, and climate-resilient wheat crop productivity. Sci Rep 2024; 14:4074. [PMID: 38374327 PMCID: PMC10876626 DOI: 10.1038/s41598-024-53682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Nanotechnology appears to be a promising tool to redefine crop nutrition in the coming decades. However, the crucial interactions of nanomaterials with abiotic components of the environment like soil organic matter (SOM) and carbon‒sequestration may hold the key to sustainable crop nutrition, fortification, and climate change. Here, we investigated the use of sugar press mud (PM) mediated ZnO nanosynthesis for soil amendment and nutrient mobilisation under moderately alkaline conditions. The positively charged (+ 7.61 mv) ZnO sheet-like nanoparticles (~ 17 nm) from zinc sulphate at the optimum dose of (75 mg/kg blended with PM (1.4% w/w) were used in reinforcing the soil matrix for wheat growth. The results demonstrated improved agronomic parameters with (~ 24%) and (~ 19%) relative increases in yield and plant Zn content. Also, the soil solution phase interactions of the ZnO nanoparticles with the PM-induced soil colloidal carbon (- 27.9 mv and diameter 0.4864 μm) along with its other components have influenced the soil nutrient dynamics and mineral ecology at large. Interestingly, one such interaction seems to have reversed the known Zn-P interaction from negative to positive. Thus, the study offers a fresh insight into the possible correlations between nutrient interactions and soil carbon sequestration for climate-resilient crop productivity.
Collapse
Affiliation(s)
- Lahur Mani Verma
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
- Electrophysical Laboratory, Department of Chemistry, IIT Delhi, New Delhi, 110016, India
| | - Ajay Kumar
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, UP, India
| | - Garima Singh
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Umesh Singh
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Shivani Chaudhary
- Biommaterials and Bio-Interface Laboratory, Center for Biomedical Engineering IIT Delhi, New Delhi, 110016, India
| | - Sachin Kumar
- Biommaterials and Bio-Interface Laboratory, Center for Biomedical Engineering IIT Delhi, New Delhi, 110016, India
| | - Anita Raj Sanwaria
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Pravin P Ingole
- Electrophysical Laboratory, Department of Chemistry, IIT Delhi, New Delhi, 110016, India
| | - Satyawati Sharma
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Yetilmezsoy K, Kıyan E, Ilhan F, Özçimen D, Koçer AT. Screening plant growth effects of sheep slaughterhouse waste-derived soil amendments in greenhouse trials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115586. [PMID: 35753126 DOI: 10.1016/j.jenvman.2022.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Ameliorative effects of sheep slaughterhouse waste-derived soil amendments (struvite, blood meal, bone meal) were explored and quantified by a series of comparative greenhouse trials. A scoring matrix system was developed for 25 different test plants using 300 agricultural measurements obtained for three basic growth parameters (fresh-dry plant weights and plant heights) and four different fertilizer sources including solid vermicompost. More than 70% of NH4+-N recovery from sheep slaughterhouse wastewater was achieved using a chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43-P = 1.2:1:1, a reaction pH of 9.0, an initial NH4+-N concentration of 240 mg/L, and a reaction time of 15 min. According to SEM micrographs, surface morphology of struvite exhibited a highly porous structure composed of irregularly shaped crystals of various sizes (11.34-79.38 μm). FTIR spectroscopy verified the active functional groups on the proximity of all fertilizer sources within the spectral range of 500-3900 cm-1. TGA-DTG-DSC thermograms of struvite revealed that the mass loss occurred in two temperature regions and reached a maximum mass loss rate of 1.63%/min at 317 °C. The average percentages of increase (57.55-100.62%) and performance points (69-79) corroborated that the fertility value of struvite ranked first on average in cultivation of the analyzed plant species. Findings of this agro-valorization study confirmed that sheep slaughterhouse waste-derived fertilizers could be a beneficial way to promote bio-waste management and environmentally friendly agriculture.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Emel Kıyan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Didem Özçimen
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Anıl Tevfik Koçer
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| |
Collapse
|
7
|
Zhang J, Li S, Wang N, Chen W, Feng X, Jia B, Zhao Y, Yang T, Zong X. The introduced strain Mesorhizobium ciceri USDA3378 is more competitive than an indigenous strain in nodulation of chickpea in newly introduced areas of China. Lett Appl Microbiol 2022; 75:1171-1181. [PMID: 35793390 DOI: 10.1111/lam.13785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The present study aimed to compare the competitive advantage of two chickpea nodulating rhizobia strains (an indigenous strain Mesorhizobium muleiense CCBAU 83963T and an introduced strain Mesorhizobium ciceri USDA 3378) in different soils originated from new chickpea cultivation areas of China. The results showed that USDA 3378 had a significant competitive advantage in nodulation, with nodulation occupation rates ranging from 84.6% to 100% in all the sampled soils. According to the efficiency of symbiosis under single inoculation, chickpea plants inoculated with USDA 3378 showed better symbiotic performance based on the plant dry weight, leaf chlorophyll content and nodule numbers. The chickpea plants inoculated with USDA 3378 formed nodules about 2 days earlier than those inoculated with CCBAU 83963T . The higher growth in media and the stronger adsorption on chickpea roots of USDA 3378 when mixed with CCBAU 83963T may explain why USDA3378 shows a competitive advantage. The results from this study will contribute towards the development of effective chickpea rhizobial inoculants for soil conditioning and more environmentally friendly production of chickpeas in China.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China.,Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, 450002, Henan Province, P. R. China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, P. R. China
| | - Xin Feng
- Xinjiang Tianshan Qidou Biotechnology Co., Ltd., Urumqi, 830000, P. R. China
| | - Bingqi Jia
- Henan Fuyunwang Happy Farm Ecological Food Co., Ltd., Jia County, 467000, P. R. China
| | - Yongfeng Zhao
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, 756000, P. R. China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Bejing, 100081, P. R. China
| | - Xuxiao Zong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Bejing, 100081, P. R. China
| |
Collapse
|
8
|
Singh G, Tiwari A, Gupta A, Kumar A, Hariprasad P, Sharma S. Bioformulation development via valorizing silica-rich spent mushroom substrate with Trichoderma asperellum for plant nutrient and disease management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113278. [PMID: 34325372 DOI: 10.1016/j.jenvman.2021.113278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
The present investigation was performed to valorize paddy straw (PS) based silica (Si) rich Spent Mushroom Substrate (SMS) of Pleurotus ostreatus for Plant Nutrient and Disease Management in wilt (caused by F. oxysporum f. sp. lycopersici) susceptible tomato plant F1 Hybrid King 180. Raw PS and SMS generated by P. ostreatus cultivated on PS only, and PS amended with 5% soybean cake (SC) were bio-fortified with Trichoderma asperellum (TA). SMS (PS+ 5% SC) was found supporting the growth of T. asperellum to an extent of 12.37 × 1013 conidia/g substrate. GC-MS analysis of SMS detected several bioactive metabolites like Palmitic acid, Oleic acid, Methyl linoleate, Stigmasterol, etc., known for plant health management. Bioformulations were developed employing Press Mud (PM) and Talcum Powder (TP) as carrier materials. Among the different bioformulations tested in pots study; SMS (PS+ 5% SC) SiTAPM, collectively named as TF-I, provided improved levels of morpho-biochemical and nutritional parameters, i.e., Plant Biomass (2.27 folds), Root Volume (1.75 folds), Chlorophyll (2.66 folds), Carotenoids (2.42 folds), Number of Fruits (1.76 folds), Fruit Biomass (2.02 folds), Total Soluble Sugars (2.32 folds), Total Soluble Proteins (1.70 folds), and nutraceutical parameters as Lycopene (1.42 folds), β-carotene (2.65 folds) and Ascorbic Acid (1.54 folds), along with significant (p < 0.05) reduction in the Disease Severity Index (84.34%-21.23%), over the pathogen affected plant taken as control. The fruits and leaves garnered under TF-I displayed Total Polyphenol Content (TPC) of 74.5 and 126.9 mg g-1 gallic acid, respectively, with 83.73% DPPH and 72.25% FRAP activity, indicating the elicitation of antioxidant properties in tomato fruits. EDS analyses showed 21.53% Si in SMS, and plant mapping investigation indicated a substantial accumulation of Si, which is well conceded to promote growth, disease resistance, and antioxidant parameters. The study also endorsed the use of PM over TP, as TF-I recorded an acceptable conidial count (2.22 × 108 cfu/g) towards the end of six months storage period over other bioformulations. Overall, the study envisages the development and application of innovative methodology (TF-I), offering an eco-friendly alternative for producing quality crops and a sustainable solution to waste management, thus delivering a holistic contribution towards the circular economy.
Collapse
Affiliation(s)
- Garima Singh
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Akansha Gupta
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, India
| | - P Hariprasad
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India.
| |
Collapse
|