1
|
Cho HK, Khuman SN, Cho IG, Park MK, Choi SD. Spatial distributions and source identification of PCDD/Fs and PCBs in soils and pine needles in the multi-industrial city of Ulsan, South Korea. CHEMOSPHERE 2024; 369:143821. [PMID: 39617327 DOI: 10.1016/j.chemosphere.2024.143821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The spatial distribution and contamination patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in soil and pine needles from the multi-industrial city of Ulsan, South Korea were assessed. The mean concentrations of Σ17 PCDD/Fs, Σ12 dl-PCBs, and Σ7 I-PCBs were 78 pg/g dw, 90 pg/g dw, and 453 pg/g dw in the soil and 6 pg/g ww, 31 pg/g ww, and 166 pg/g ww in the pine needles, respectively. The mean concentrations of PCDD/Fs, dl-PCBs, and I-PCBs in the soil at industrial sites (138, 184, and 453 pg/g dw) were significantly higher than those at urban (47, 33, and 186 pg/g dw) and suburban sites (48, 49, and 234 pg/g dw). In the pine needles, although PCDD/F and PCB levels were higher at several industrial sites, mean concentrations at the industrial (6, 31, and 166 pg/g ww), urban (4, 29, and 143 pg/g ww), and suburban (4, 31, and 169 pg/g ww) sites were comparable, indicating that atmospheric transport plays a crucial role in spreading contamination throughout the study area. Higher chlorinated PCBs were predominant in the soils, while PCDFs and lower chlorinated PCBs were more common in the pine needles, reflecting the distinct physicochemical properties and interactions of these chemicals with each medium. Principal Component Analysis (PCA) revealed industrial combustion as the main source of PCDD/Fs and PCBs, with Aroclors identified as an additional source of PCBs. Suburban areas were influenced by both local sources and pollutants transported from urban and industrial areas. This study highlights that industrial activities and atmospheric transport significantly contribute to the widespread contamination of PCDD/Fs and PCBs in Ulsan.
Collapse
Affiliation(s)
- Hye-Kyung Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Tran HT, Hoang HG, Chacha WE, Mukherjee S, Duong TVH, Nguyen NSH, Nguyen KN, Naidu R. A review of advanced bioremediation technologies for dioxin-contaminated soil treatment: Current and future outlook. CHEMOSPHERE 2024; 366:143400. [PMID: 39321885 DOI: 10.1016/j.chemosphere.2024.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), namely known as dioxins, are persistent organic compounds with high toxicity. The presence of dioxins in soil is a major environmental issue worldwide, as it negatively impacts both ecosystems and human health. Thus, several advanced techniques have been applied to overcome this issue, offering promising treatment efficiency and cost-effectiveness. This review employs a meta-analysis strategy to provide an up-to-date assessment of the global situation of dioxin-contaminated soil. Dioxin concentrations are commonly higher in industrial and urban areas than in rural areas, primarily due to anthropogenic activities such as chemical manufacturing and waste incineration. Furthermore, several advanced bioremediation technologies for dioxin treatment, including biosurfactants, composting, and phytoremediation were highlighted and thoroughly discussed. Aerobic composting has proven to be robust in removing dioxins, achieving treatment efficiencies ranging from 65% to 85%. Whereas, phytoremediation, particularly when involving agricultural crops like zucchini, cucumber, and wheat, shows great promise in dioxin removal through various mechanisms, including root uptake and transpiration. Notably, biosurfactants such as rhamnolipids and sophorolipids have been effectively used to remediate dioxin-contaminated soil due to their significantly enhanced bioavailability of dioxins and their interaction with microbes. This review provides a comprehensive understanding of advanced biotechnologies for remediating dioxin-contaminated soil. It also addresses the technical and economic aspects of dioxin treatment and identifies future directions and research perspectives to fill knowledge gaps in this field.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Viet Nam
| | - Hong Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam.
| | - Wambura E Chacha
- Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St., Lawrence, KS, 66045, USA
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Tran Vo Hai Duong
- Department of Agriculture and Rural Development, Bac Lieu Technical and Economic College, Bac Lieu province, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 24000, Viet Nam
| | - Khoi Nghia Nguyen
- Faculty of Soil Science, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Ojha V, Sharma A, Ranjan VP, Rautela R, Dhawral A, Kumar S. Resource recovery from legacy waste dumpsites in India: A path towards sustainable waste management. CHEMOSPHERE 2024; 365:143337. [PMID: 39277043 DOI: 10.1016/j.chemosphere.2024.143337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Legacy waste dumpsites have been a significant environmental concern in India for many years. These dumpsites are characterized by the uncontrolled disposal of Municipal Solid Waste (MSW) and have led to various types of pollution and disease outbreaks. As India faces the challenges of rapid urbanization and increased waste generation and with over 3000 legacy waste dumpsites in the country, the need to address these legacy waste dumpsites has become paramount. As we continue to struggle extensively for waste management as well as space, landfill mining has been recognized as a promising way of recovering resources in our country by employing various technological and engineering advancements to extract valuable materials and energy from legacy waste streams. Unlike existing waste management approaches, this review explores the application of a novel Recovery Potential Index (RPI) for legacy waste dumpsites in India, which evaluates the feasibility of waste treatment facilities based on waste compositions and recovered material quantities. Depending on the RPI, recovered fine fractions can be sold as city compost or used as fill material, while recyclable, combustible, and inert fractions could be directed towards appropriate recycling or landfill uses. Unscientific and uncontrolled landfill mining practices could lead to unanticipated impacts on the nearby environment in the form of heavy contamination, thereby presenting this practice as a challenge in addition to the immense opportunities it provides.
Collapse
Affiliation(s)
- Vivek Ojha
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Apurva Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Rahul Rautela
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Aachal Dhawral
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wang B, Wang P, Liu S, Shi H, Teng Y. A commercial humic acid inhibits benzo(a)pyrene biodegradation by Paracoccus aminovorans HPD-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171966. [PMID: 38537831 DOI: 10.1016/j.scitotenv.2024.171966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.
Collapse
Affiliation(s)
- Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Peiheng Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources, Nanjing 210018, China.
| |
Collapse
|
5
|
Li Q, Li Y, Pu Q, Yang H, Du M, Li X, Li Y, Li X. Exposure estimation and neurotoxicity inhibition of dioxins in sensitive populations near domestic waste incineration plant through adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134066. [PMID: 38522193 DOI: 10.1016/j.jhazmat.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
6
|
Rex KR, Chakraborty P. Polychlorinated biphenyls in bovine milk from a typical informal electronic waste recycling and related source regions in southern India before and after the COVID-19 pandemic outbreak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168879. [PMID: 38013105 DOI: 10.1016/j.scitotenv.2023.168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
For more than a decade, Chennai city in southern India has been evidenced with informal electronic waste (e-waste) recycling and open burning practices as the potential sources for polychlorinated biphenyls (PCBs). PCBs can bioaccumulate in livestock particularly cows grazing on the contaminated soil. The outbreak of the COVID-19 pandemic led to additional challenges associated with waste management practices. Hence this study aims to elucidate twenty-five PCB congeners in bovine milk from the previously reported PCB source regions in Chennai and the suburbs before and after about three years of the pandemic outbreak along electronic waste recycling (EWR), open burning dumps (OBD), and residential (RES) transects. The geomean concentration of Ʃ25PCBs in ng/g lipid weight (lw) followed a decreasing trend of EWR (13 ng/g lw) > OBD (8 ng/g lw) > RES (4 ng/g lw). Over 80 % of PCBs stemmed from EWR and OBD transects before and after the pandemic. However, a significant surge in the level of PCB-52 was observed in the OBD transect after the pandemic outbreak. Most toxic PCB congeners, PCB-126 and -169 were significant contributors to TEQs in EWR and OBD transects and can be reasoned with the burning of waste materials and mixed plastics in these transects. The highest average daily dose (ADD) exposure risk was for children from EWR and was significantly higher (p < 0.05) than other transects. Mean ADD-induced TEQ (6.6 pg TEQ/kg-bw/day) from the cows grazing around Kodungaiyur dumpsite slightly exceeded the EU guideline of 5.5 pg TEQ/kg-bw/day after the outbreak of the pandemic due to PCB-126. However, none of the samples exceeded the US FDA (1.5μg/g milk fat) recommendation limits for PCBs in milk fat. Prolonged exposure to such persistent organic pollutants interlinked with the burning of mixed waste in the open dumps can be a public health concern.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Chakraborty P, Chandra S, Dimmen MV, Hurley R, Mohanty S, Bharat GK, Steindal EH, Olsen M, Nizzetto L. Interlinkage Between Persistent Organic Pollutants and Plastic in the Waste Management System of India: An Overview. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:927-936. [PMID: 35178580 PMCID: PMC8853888 DOI: 10.1007/s00128-022-03466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Improper handling of plastic waste and related chemical pollution has garnered much attention in recent years owing to the associated detrimental impacts on human health and the environment. This article reports an overview of the main interlinkages between persistent organic pollutants (POPs) and plastic in the waste management system of India. Both plastics and POPs share certain common traits such as persistence, resistance to biological degradation, and the ability to get transported over long distances. Throughout the processes of production, consumption, and disposal, plastics interact with and accumulate POPs through several mechanisms and end up co-existing in the environment. Plastic waste can undergo long-range transport through rivers and the oceans, break down into microplastics and get transported through the air, or remain locked in waste dump yards and landfills. Over time, environmental processes lead to the leaching and release of accumulated POPs from these plastic wastes. Plastic recycling in the Indian informal sector including smelting, scrubbing, and shredding of plastic waste, is also a potential major POPs source that demands further investigation. The presence of POPs in plastic waste and their fate in the plastic recycling process have not yet been elucidated. By enhancing our understanding of these processes, this paper may aid policy decisions to combat the release of POPs from different waste types and processes in India.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Chennai, Tamil Nadu, 603203, India.
| | - Sarath Chandra
- Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Chennai, Tamil Nadu, 603203, India
| | | | - Rachel Hurley
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
| | - Smita Mohanty
- Central Institute of Petrochemicals Engineering Technology, CIPET, Bhubaneswar, Odisha, India
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
- Department of International Environment and Development Studies, Norwegian University of Life Sciences, Ås, Norway
| | - Marianne Olsen
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
- Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
8
|
Ren H, Su P, Kang W, Ge X, Ma S, Shen G, Chen Q, Yu Y, An T. Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119912. [PMID: 35961570 DOI: 10.1016/j.envpol.2022.119912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Soil polycyclic aromatic hydrocarbons (PAHs) generated from industrial processes are highly spatially heterologous, with limited quantitative studies on their main influencing factors. The present study evaluated the soil PAHs in three types of industrial parks (a petrochemical industrial park, a brominated flame retardant manufacturing park, and an e-waste dismantling park) and their surroundings. The total concentrations of 16 PAHs in the parks were 340-2.43 × 103, 26.2-2.63 × 103, and 394-2.01 × 104 ng/g, which were significantly higher than those in the surrounding areas by 1-2 orders of magnitude, respectively. The highest soil PAH contamination was observed in the e-waste dismantling park. Nap can be considered as characteristic pollutant in the petrochemical industrial park, while Phe in the flame retardant manufacturing park and e-waste dismantling park. Low molecular weight PAHs (2-3 rings) predominated in the petrochemical industrial park (73.0%) and the surrounding area of brominated flame retardant manufacturing park (80.3%). However, high molecular weight PAHs (4-6 rings) were enriched in the other sampling sites, indicating distinct sources and determinants of soil PAHs. Source apportionment results suggested that PAHs in the parks were mainly derived from the leakage of petroleum products in the petroleum manufacturing process and pyrolysis or combustion of fossil fuels. Contrarily, the PAHs in the surrounding areas could have been derived from the historical coal combustion and traffic emissions. Source emissions, wind direction, and local topography influenced the PAH spatial distributions.
Collapse
Affiliation(s)
- Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Peixin Su
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Wei Kang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Qiang Chen
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Shukla S, Khan R, Bhattacharya P, Devanesan S, AlSalhi MS. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. CHEMOSPHERE 2022; 292:133413. [PMID: 34973253 DOI: 10.1016/j.chemosphere.2021.133413] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
PAHs are organic pollutants that have carcinogenic and mutagenic impacts on human health and are a subject of great concern. The soil-bound polycyclic aromatic hydrocarbons (PAHs) in the urban areas can be very lethal to human health. The concentrations, sources, and possible cancer risks of 15 PAHs were analysed by collecting roadside soil samples in Lucknow, India. The range of ∑15PAHs was found to be 478.94 ng/g to 8164.07 ng/g with a mean concentration of 3748.23 ng/g. The highest contribution (32.5%) was found to be from four-ring PAHs, followed by six-ring (24.5%) and five-ring (16.7%) PAHs. The source apportionment through diagnostic ratios ANT/(ANT + PHE) against FL-2/(FL-2+PYR) highlighted the dominance of petroleum, wood, coal, and grass combustion as sources of PAHs in the study area. Source apportionment was also done through positive matrix factorization, confirming the dominance of 'vehicular emissions' (49%), followed by 'coal and biomass combustion' (∼39%), and 'leakages, volatilization and petroleum combustion' (∼12%) as potential sources. The results from lifetime cancer risks (ILCR) varied in the range of 7.5 × 10-4 and 1.3 × 10 × -2 illustrating 'high cancer risk'. The total cancer risk susceptibility of children was found to be 31% more than that of adults. The highest risk associated with toxic equivalent concentration (TEQ) was found at site S8 highlighting the impact of the presence of an international airport, and huge traffic load. The present study will prove to be useful for information related to human exposure to PAHs content in soil in the study area and as baseline study for policy makers, stakeholders, and researchers.
Collapse
Affiliation(s)
- Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|