1
|
Rossi S, Mantovani M, Marazzi F, Mezzanotte V, Ficara E. Long-term outdoor operation of microalgae-based digestate treatment: impact of external drivers on process performances and techno-economic assessment. BIORESOURCE TECHNOLOGY 2025; 427:132406. [PMID: 40107388 DOI: 10.1016/j.biortech.2025.132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
A pilot-scale algal pond for liquid digestate treatment (5.8 m2, 0.75-1.83 m3) was operated outdoor for 1145 cumulative days. Key performance indicators were correlated with relevant external drivers including influent characteristics, weather conditions, and operational parameters, gaining information for management and optimisation. A techno-economic assessment allowed to calculate and validate process costs for a scaled-up plant (2-ha). Despite external factors, thanks to consistent nitrification, ammonium removal was high and stable during all trials (85 ± 8%). Environmental and operational conditions strongly influenced phosphate removal (51 ± 21%) and biomass productivity (10.4 ± 6.6 g TSS/m2/d). High biomass productivities were mostly associated to global radiation, while phosphate removal was influenced by digestate characteristics. The relatively low biomass production costs (6.9 €/kg or 7.4 $/kg) and substantial savings for liquid digestate bioremediation (3.4 €/m3 or 3.7 $/m3) and N removal (15.1 €/kg N or 16.2 $/kg N) confirmed the high potential of microalgae-based technologies as a cost-effective and sustainable alternative to conventional approaches for wastewater bioremediation and resource recovery.
Collapse
Affiliation(s)
- S Rossi
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Mantovani
- Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - F Marazzi
- Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - V Mezzanotte
- Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - E Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
2
|
Rossi S, Carecci D, Marazzi F, Di Benedetto F, Mezzanotte V, Parati K, Alberti D, Geraci I, Ficara E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024; 10:e23240. [PMID: 38163195 PMCID: PMC10755323 DOI: 10.1016/j.heliyon.2023.e23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO2 loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y-1 of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y-1 of raw liquid digestate from AD and 0.45 kt·y-1 of CO2 from biogas upgrading, and 0.40 kt·y-1 of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW-1, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.
Collapse
Affiliation(s)
- Simone Rossi
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Davide Carecci
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Francesca Marazzi
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Francesca Di Benedetto
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Valeria Mezzanotte
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Aquaculture division, 26027 Rivolta d’Adda, Italy
| | | | | | - Elena Ficara
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| |
Collapse
|
3
|
Lee JC, Moon K, Lee N, Ryu S, Song SH, Kim YJ, Lee SM, Kim HW, Joo JH. Biodiesel production and simultaneous treatment of domestic and livestock wastewater using indigenous microalgae, Chlorella sorokiniana JD1-1. Sci Rep 2023; 13:15190. [PMID: 37709845 PMCID: PMC10502075 DOI: 10.1038/s41598-023-42453-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, the potential of Chlorella sorokiniana JD1-1 for biodiesel production was evaluated using domestic wastewater (DWW) as a diluent for locally-generated livestock wastewater (LWW). This strategy aimed to provide sustainable wastewater treatment, reduce environmental impacts, enhance cost-effectiveness, and promote biodiesel production. LWW was diluted with tap water and DWW at ratios of 75%, 50%, and 25% (v/v), and the effects on microalgal growth, nutrient removal efficiency, and lipid yield were evaluated. Although the maximum biomass concentration was observed in the artificial growth medium (BG-11) (1170 mg L-1), 75% dilution using tap water (610 mg L-1) and DWW (780 mg L-1) yielded results comparable to the exclusive use of DWW (820 mg L-1), suggesting a potential for substitution. Total nitrogen (TN) removal rates were consistently high under all conditions, particularly in samples with higher concentrations of LWW. Conversely, total phosphorus (TP) concentrations decreased under most conditions, although some displayed large increases. Further studies are necessary to optimize the nutrient balance while maintaining economic feasibility and maximizing biodiesel production.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Nakyeong Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sangdon Ryu
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| |
Collapse
|
4
|
Lee JC, Joo JH, Chun BH, Moon K, Song SH, Kim YJ, Lee SM, Lee AH. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115648. [PMID: 35949094 DOI: 10.1016/j.jenvman.2022.115648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The use of indigenous microalgae strains for locally generated domestic (DWW) and livestock wastewater (LWW) treatment is essential for effective and economical applications. Phototrophic microalgae-based biofuel production also contributes to carbon sequestration via CO2 fixation. However, simultaneous consideration of both isolation and screening procedures for locally collected indigenous microalgae strains is not common in the literature. We aimed to isolate indigenous microalgae strains from locally collected samples on coastlines and islands in South Korea. Among five isolated strains, Chlorella sorokiniana JD1-1 was selected for DWW and LWW treatment due to its ability to grow in waste resources. This strain showed a higher specific growth rate in DWW than artificial growth medium (BG-11) with a range of 0.137-0.154 d-1. During cultivation, 96.5%-97.1% of total nitrogen in DWW and 89.2% in LWW was removed. Over 99% of total phosphorus in DWW and 96.4% in LWW was also removed. Finally, isolated C. sorokiniana JD1-1 was able to fix CO2 within a range of 0.0646-0.1043 g CO2 L-1 d-1. These results support the domestic applications of carbon sequestration-efficient microalgae in the waste-to-energy nexus.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Byung Hee Chun
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Aslan Hwanhwi Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| |
Collapse
|
5
|
Rossi S, Pizzera A, Bellucci M, Marazzi F, Mezzanotte V, Parati K, Ficara E. Piggery wastewater treatment with algae-bacteria consortia: Pilot-scale validation and techno-economic evaluation at farm level. BIORESOURCE TECHNOLOGY 2022; 351:127051. [PMID: 35341919 DOI: 10.1016/j.biortech.2022.127051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The efficiency of an outdoor pilot-scale raceway pond treating the wastewaters generated by a large-scale piggery farm in Northern Italy was evaluated. The biomass productivity over 208 days of experimentation was 10.7 ± 6.5 g TSS·m-2·d-1, and ammoniacal nitrogen, orthophosphate, and COD average removal efficiencies were 90%, 90%, and 59%, respectively. Results were used to perform a comprehensive techno-economic analysis for integrating algae-based processes in farms of different sizes (100-10000 pigs). The amount of N disposed of on agricultural land could be reduced from 91% to 21%, increasing the fraction returned to the atmosphere from 2.4% to 63%, and the fraction in the biomass from 6.2% to 16%. For intensive farming, the release of 110 t N·ha-1·y-1 contained in the digestate could be avoided by including algae-bacteria processes. The biomass production cost was as low as 1.9 €·kg-1, while the cost for nitrogen removal was 4.3 €·kg N-1.
Collapse
Affiliation(s)
- S Rossi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - A Pizzera
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - M Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - F Marazzi
- Università degli Studi di Milano, Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - V Mezzanotte
- Università degli Studi di Milano, Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - K Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Località La Quercia, Cremona, Rivolta d'Adda, Italy
| | - E Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|