1
|
Weldon M, Ganguly S, Euler C. Co-consumption for plastics upcycling: A perspective. Metab Eng Commun 2025; 20:e00253. [PMID: 39802937 PMCID: PMC11717657 DOI: 10.1016/j.mec.2024.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes. We aim to understand the current feasibility of combining these into a single, closed-loop process. Our analysis shows that microbial plastic degradation is currently the rate-limiting step to "closing the loop", with reported rates that are orders of magnitude lower than those of pathways to upcycle plastic degradation products. We further find that neither degradation nor upcycling have been demonstrated at rates sufficiently high to justify industrialization at present. As a potential way to address these limitations, we suggest more investigation into mixotrophic approaches, showing that those which leverage the unique properties of plastic degradation products such as ethylene glycol might improve rates sufficiently to motivate industrial process development.
Collapse
Affiliation(s)
- Michael Weldon
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Sanniv Ganguly
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Christian Euler
- Department of Chemical Engineering, University of Waterloo, Canada
| |
Collapse
|
2
|
Olaya-Rincon M, Serra-Rada J, Silva CD, Barcelona P, Dosta J, Astals S, Martínez M. Thermophilic anaerobic biodegradation of commercial polylactic acid products. BIORESOURCE TECHNOLOGY 2025; 425:132296. [PMID: 40015530 DOI: 10.1016/j.biortech.2025.132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study examines the anaerobic biodegradability of six commercial polylactic acid (PLA) products under thermophilic conditions. All products showed similar methane yields of 507 ± 24 L CH4 kg-1 VS, with an estimated biodegradability of 100 %. However, these products showed a slow degradation rate, with an average kinetic constant of 0.008 d-1. Products degradation was monitored by recovering samples from tests after 30, 60 and 90 days. After 30 days, all products showed changes in colour and fragmentation, that were more pronounced after 60 and 90 days. Degradation was also evident by the reduction of the carbonyl index and a decrease in the melting temperature. Nonetheless, differences in crystallinity, thermal properties, thickness and additives did not affect methane yield or degradation rate. Despite being fully biodegradable, biodegradation at full-scale was estimated at < 20 %, limiting the feasibility of anaerobic digestion as an end-of-life management option and highlighting the need for improved waste management strategies.
Collapse
Affiliation(s)
- Mario Olaya-Rincon
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Joaquim Serra-Rada
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Cristopher Da Silva
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Pol Barcelona
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain.
| | - Mònica Martínez
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| |
Collapse
|
3
|
Angelini S, Gallipoli A, Montecchio D, Angelini F, Gianico A, Sbicego M, Braguglia CM. The strategic role of a mild hydrothermal pretreatment in enhancing anaerobic degradation of commercial bio-based compostable plastics associated to food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125332. [PMID: 40228474 DOI: 10.1016/j.jenvman.2025.125332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The expansion of Anaerobic Digestion (AD) technology to turn food waste (FW) into biogas will influence the management of the associated compostable bio-based plastics disposed of in the organic fraction of municipal waste collection. Waste processing aspects and bio-based plastic biodegradation profile in anaerobic conditions need research. The fate of some commercially available compostable items made of thermoplastic starch or PLA-based blends was investigated, by performing lab-scale disposal phase and thermophilic AD, with the integration of a mild hydrothermal pretreatment. For comprehensive understanding of bio-based plastics degradation, the biomethane production, structural (visual inspection, weight, dimension) and composition changes (solids, organics and carbohydrates content) were analyzed. Thermal pretreatment promoted thermoplastic starch-based product disintegration (40 ± 2 %) and the extraction of carbohydrates into the liquid eluate, with the potential to be transformed into high-value-added products through fermentative upgrading processes. A significant biodegradation of pretreated bio-based plastics up to 27.5 % and 40 %, respectively for thermoplastic starch- and polylactic acid (PLA)-based material, was observed. These preliminary results evidence the strategic role of the hydrothermal pretreatment in enhancing anaerobic degradation and the possibility to treat the bio-based plastics as FW co-substrate, avoiding the time and cost-consuming sorting phase in waste management plants.
Collapse
Affiliation(s)
- Stefania Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Agata Gallipoli
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Daniele Montecchio
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Francesca Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Andrea Gianico
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Michela Sbicego
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| |
Collapse
|
4
|
Gutiérrez-Silva K, Capezza AJ, Gil-Castell O, Badia-Valiente JD. UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends. Polymers (Basel) 2025; 17:1173. [PMID: 40362957 PMCID: PMC12073353 DOI: 10.3390/polym17091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion.
Collapse
Affiliation(s)
- K. Gutiérrez-Silva
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| | - Antonio J. Capezza
- Fibre and Polymer Technology Department, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden;
| | - O. Gil-Castell
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| | - J. D. Badia-Valiente
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| |
Collapse
|
5
|
Yasin NM, Polanska M, Verbeken K, Van Impe JFM, Akkermans S. Optimizing thermal and thermal-alkaline pretreatments for polylactic acid biodegradation by Amycolatopsis orientalis and Amycolatopsis thailandensis. BIORESOURCE TECHNOLOGY 2025; 420:132114. [PMID: 39870143 DOI: 10.1016/j.biortech.2025.132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Environmental pollution from packaging, has led to a need for sustainable alternatives. This study investigates the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis after thermal and thermal-alkaline pretreatments. The biodegradation was assessed based on weight loss, CO2 evolution, carbon balance analysis and scanning electron microscopy (SEM). The analysis showed that pretreatment at 37 °C for 8 h provided effective enhancement of the biodegradation performance. Combining thermal pretreatment with alkaline conditions led to chemical degradation of PLA, but is less suitable as a pretreatment for biodegradation. It was also demonstrated that the mineralization rate over a two-week period was higher following thermal than thermal-alkaline pretreatment. SEM confirmed improved biodegradation as illustrated by increased surface roughness. These findings suggest that thermal pretreatment at 37 °C for 8 h is the most effective strategy for enhancing PLA biodegradation by Amycolatopsis spp., promoting a sustainable approach to plastic waste management.
Collapse
Affiliation(s)
- Najwa Mat Yasin
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium; Faculty of Ocean Engineering, Universiti Malaysia Terengganu (UMT), 21030 Terengganu, Malaysia
| | - Monika Polanska
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
| | - Kim Verbeken
- Sustainable Materials Science (SMS), Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Jan F M Van Impe
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium.
| | - Simen Akkermans
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
| |
Collapse
|
6
|
Vargas-Estrada L, García-Depraect O, Zimmer J, Muñoz R. Analysis of biological treatment technologies, their present infrastructures and suitability for biodegradable food packaging - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124395. [PMID: 39933383 DOI: 10.1016/j.jenvman.2025.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been an increased demand for biodegradable plastics in the food packaging industry, especially for highly food soiled packaging items containing food/beverage solids that will not be recycled using a non-biological process. However, the increased usage of those materials have also raised concerns and confusion, as a major part of these biodegradable plastics are not effectively separated nor recycled. The lack of acceptance in recycling facilities, related to confusion with their conventional polymers counterparts, as well as short retention times of recycling facilities, often incompatible with the degradation kinetics of biodegradable plastics, stand as the major drawbacks for bioplastics treatment. Additionally, the presence of incompletely biodegraded bioplastics during biological treatments or in the final products i.e. compost or digestate, could lead to process failure or limit the commercialization of the compost. This work critically reviews the fundamentals of the biological treatments, anaerobic digestion and composting processes, and discusses the current strategies to improve their performance. In addition, this work summarizes the state-of-the-art knowledge and the impact of bioplastics on full-scale treatment plants. Finally, an overview of the current installed treatment capacity is given to show the areas of opportunity that can be improved and exploited to achieve a better waste management of biodegradable plastics.
Collapse
Affiliation(s)
- Laura Vargas-Estrada
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Johannes Zimmer
- Nestlé Research, Société des Produits Nestlé S.A., Route Du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
7
|
Kim HR, Koh HY, Shin H, Suh DE, Lee S, Choi D. Enhancing the oxidation of polystyrene through a homogeneous liquid degradation system for effective microbial degradation. Front Microbiol 2024; 15:1509603. [PMID: 39669785 PMCID: PMC11636969 DOI: 10.3389/fmicb.2024.1509603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Plastics play a crucial role in modern industries; however, their resistance to natural degradation contributes to environmental pollution, and microplastics pose a health threat. The hydrophobic nature of microplastics poses a considerable challenge, rendering them resistant to dissolving in water. In this study, we conducted a comparative analysis of the microbial biodegradation capabilities of polystyrene in solid and liquid states. Polystyrene in its solid foam form, along with polystyrene converted into a liquid state using ethyl-ester oil, was biodegraded by microorganisms. Subsequently, the liquid plastic was re-extracted into its solid form, and the degree of degradation was assessed using weight loss measurement, XPS, FT-IR, GPC, and TGA. Liquid-state polystyrene exhibited a higher degradation rate than that reported previously. Furthermore, liquid polystyrene undergoes more pronounced oxidation than its solid counterpart, leading to an increased oxygen atom ratio. Chemical structure analysis highlighted the distinct formation of -OH and C=O functional groups in the liquid state compared to those in the solid state. Additionally, notable changes in the molecular weight and thermal stability of polystyrene were observed during biodegradation in the liquid state. This study suggests that a heterogeneous reaction (solid plastic-liquid medium) might impede plastic biodegradation, while indicating the potential to enhance the degradation efficiency through a homogeneous reaction (liquid plastic-liquid medium). The follow-up study identifies appropriate solvents and optimizes cultivation conditions, offering potential to enhance the efficiency of biological plastic degradation.
Collapse
Affiliation(s)
- Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hye Yeon Koh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hyeyoung Shin
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeonbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Donggeon Choi
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| |
Collapse
|
8
|
Deivayanai VC, Karishma S, Thamarai P, Kamalesh R, Saravanan A, Yaashikaa PR, Vickram AS. Innovations in plastic remediation: Catalytic degradation and machine learning for sustainable solutions. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104449. [PMID: 39476499 DOI: 10.1016/j.jconhyd.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/20/2024]
Abstract
Plastic pollution is an extreme environmental threat, necessitating novel restoration solutions. The present investigation investigates the integration of machine learning (ML) techniques with catalytic degradation processes to improve plastic waste management. Catalytic degradation is emphasized for its efficiency and selectivity, while several machine learning techniques are assessed for their capacity to enhance these processes. The review goes into ML applications for forecasting catalyst performance, determining appropriate reaction conditions, and refining catalyst design to improve overall process performance. Briefing about the reinforcement, supervised, and unsupervised learning algorithms that handle all complex data and parameters is explained. A techno-economic study is provided, evaluating these ML-driven system's performance, affordability, and environmental sustainability. The paper reviews how the novel method integrating ML with catalytic degradation for plastic cleanup might alter the process, providing new insights into scalable and sustainable solutions. This review emphasizes the usefulness of these modern strategies in tackling the urgent problem of plastic pollution by offering a comprehensive examination.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| |
Collapse
|
9
|
Lin L, Yi J, Wang J, Qian Q, Chen Q, Cao C, Zhou W. Enhancing Microplastic Degradation through Synergistic Photocatalytic and Pretreatment Approaches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22582-22590. [PMID: 39422971 DOI: 10.1021/acs.langmuir.4c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs) pollution has emerged as a pressing environmental concern in recent years. Owing to their minute dimensions, conventional plastic remediation approaches are inadequate for addressing the challenges posed by MPs. Herein, spherical (BOC-S) and nanosheet (BOC-N) BiOCl photocatalysts were prepared and applied to the degradation of poly(ethylene terephthalate) (PET) MPs after hydrothermal pretreatment. The results indicated that the degradation efficiency of pretreated PET MPs using BOC-S and BOC-N photocatalysts was 8.8 and 6.9 times that of the unpretreated MPs under the same conditions. Comparative experiments confirmed the excellent performance of the photocatalysis-pretreatment system. The creation of pores on the surface of pretreated PET MPs facilitates the entry of active substances into the interior to cause damage, while the enhancement of hydrophilicity and specific surface area facilitates the contact between the catalyst and PET MPs, thus increasing the degradation efficiency. Free radical trapping experiments revealed that hydroxyl radicals (·OH) produced by photocatalysis had the greatest influence on the degradation performance of pretreated PET MPs. Finally, a possible photocatalytic degradation mechanism for PET MPs was proposed. This research offers a novel perspective on MPs degradation, providing valuable insights for advancing the efficacy of the process.
Collapse
Affiliation(s)
- Liangbin Lin
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Jiayu Yi
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Jiaming Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Changlin Cao
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Weiming Zhou
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| |
Collapse
|
10
|
García-Depraect O, Martínez-Mendoza LJ, Aragão Börner R, Zimmer J, Muñoz R. Biomethanization of rigid packaging made entirely of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Mono- and co-digestion tests and microbial insights. BIORESOURCE TECHNOLOGY 2024; 408:131180. [PMID: 39098356 DOI: 10.1016/j.biortech.2024.131180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
This study evaluates the anaerobic mesophilic mono- and co-digestion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) plastic bottles as a proxy for rigid packaging materials. Initial tests showed a 97.3 ± 0.2 % reduction in weight and an observable alteration in the surface (thinning, color fading and pitting) of the PHBH bottles after eight weeks. Subsequent tests showed that PHBH squares (3 × 3 cm) produced 400 NmL-CH4/g-VSfed, at a slower rate compared to powdered PHBH but with similar methane yield. Co-digestion experiments with food waste, swine manure, or sewage sludge showed successful digestion of PHBH alongside organic waste (even at a high bioplastic loading of 20 % volatile solids basis), with methane production comparable to or slightly higher than that observed in mono-digestion. Molecular analyses suggested that the type of co-substrate influenced microbial activity and that methane production was mainly driven by hydrogenotrophic methanogenesis. These results suggest the potential for integrating rigid PHBH packaging into anaerobic digesters.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Johannes Zimmer
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
11
|
Yasin NM, Pancho F, Yasin M, Van Impe JFM, Akkermans S. Novel methods to monitor the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis. Front Bioeng Biotechnol 2024; 12:1355050. [PMID: 38655392 PMCID: PMC11035760 DOI: 10.3389/fbioe.2024.1355050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Plastics are essential in modern life, but their conventional production is problematic due to environmental pollution and waste management issues. Polylactic acid (PLA) is a widely used bioplastic that is bio-based and biodegradable, making it a key player in the bioeconomy. PLA has been proven to be degradable in various settings, including aqueous, soil, and compost environments. However, monitoring and optimizing PLA biodegradation remains challenging. This study proposes methods to improve the quantification of PLA biodegradation by Amycolatopsis spp. Ultrasound treatments (10 s) significantly improved the enumeration of viable Amycolatopsis cells by breaking the pellets into quantifiable individual cells. A separation technique combining ultrasound (120 s) and 40 μm cell strainers effectively isolated PLA particles from biomass to quantify PLA weight loss. This enabled the monitoring of PLA biofragmentation. Finally, CO2 production was measured according to ISO 14852 to quantify mineralization. Integrating these methods provides an improved quantification for PLA biodegradation along its different stages. In a case study, this led to the construction of a carbon balance where 85.1% of initial carbon content was successfully tracked. The developed techniques for monitoring of PLA biodegradation are essential to design future waste management strategies for biodegradable plastics.
Collapse
Affiliation(s)
- Najwa Mat Yasin
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- Faculty of Ocean Engineering and Informatics, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Terengganu, Malaysia
| | - Farlash Pancho
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Md Yasin
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Jan F. M. Van Impe
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| |
Collapse
|
12
|
Efremenko E, Stepanov N, Senko O, Aslanli A, Maslova O, Lyagin I. Using Fungi in Artificial Microbial Consortia to Solve Bioremediation Problems. Microorganisms 2024; 12:470. [PMID: 38543521 PMCID: PMC10974216 DOI: 10.3390/microorganisms12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 11/12/2024] Open
Abstract
There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents are among the pollutants that have been mainly targeted by bioremediation based on various consortia containing fungi (mycelial types and yeasts). Such consortia can be designed both for the treatment of soil and water. This review is aimed at analyzing the recent achievements in the research of the artificial microbial consortia that are useful for environmental and bioremediation technologies, where various fungal cells are applied. The main tendencies in the formation of certain microbial combinations, and preferences in their forms for usage (suspended or immobilized), are evaluated using current publications, and the place of genetically modified cells in artificial consortia with fungi is assessed. The effect of multicomponence of the artificial consortia containing various fungal cells is estimated, as well as the influence of this factor on the functioning efficiency of the consortia and the pollutant removal efficacy. The conclusions of the review can be useful for the development of new mixed microbial biocatalysts and eco-compatible remediation processes that implement fungal cells.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.)
| | | | | | | | | | | |
Collapse
|
13
|
Krainara S, Mistry AN, Malee C, Chavananikul C, Pinyakong O, Assavalapsakul W, Jitpraphai SM, Kachenchart B, Luepromchai E. Development of a plastic waste treatment process by combining deep eutectic solvent (DES) pretreatment and bioaugmentation with a plastic-degrading bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132507. [PMID: 37699265 DOI: 10.1016/j.jhazmat.2023.132507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Polyethylene terephthalate (PET), a petroleum-based plastic, and polylactic acid (PLA), a biobased plastic, have a similar visual appearance thus they usually end up in municipal waste treatment facilities. The objective of this project was to develop an effective PET and PLA waste treatment process that involves pretreatment with deep eutectic solvent (DES) followed by biodegradation with a plastic-degrading bacterial consortium in a composting system. The DES used was a mixture of choline chloride and glycerol, while the bacterial strains (Chitinophaga jiangningensis EA02, Nocardioides zeae EA12, Stenotrophomonas pavanii EA33, Gordonia desulfuricans EA63, Achromobacter xylosoxidans A9 and Mycolicibacterium parafortuitum J101) used to prepare the bacterial consortium were selected based on their ability to biodegrade PET, PLA, and plasticizer. The plastic samples (a PET bottle, PLA cup, and PLA film) were pretreated with DES through a dip-coating method. The DES-coated plastic samples exhibited higher surface wettability and biofilm formation, indicating that DES increases the hydrophilicity of the plastic and facilitates bacterial attachment to the plastic surface. The combined action of DES pretreatment and bioaugmentation with a plastic-degrading bacterial consortium led to improved degradation of PET and PLA samples in various environments, including aqueous media at ambient temperature, lab-scale traditional composting, and pilot-scale composting.
Collapse
Affiliation(s)
- Saowaluk Krainara
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Avnish Nitin Mistry
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Chawanan Malee
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Chavananikul
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Wanchai Assavalapsakul
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Somrudee Meprasert Jitpraphai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Department of Marine Sciences, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Boonlue Kachenchart
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Egbune EO, Ezedom T, Orororo OC, Egbune OU, Avwioroko OJ, Aganbi E, Anigboro AA, Tonukari NJ. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World J Microbiol Biotechnol 2023; 39:259. [PMID: 37493900 DOI: 10.1007/s11274-023-03706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Georgia State University, J. Mack Robinson College of Business, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria
| |
Collapse
|
15
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
16
|
García-Depraect O, Lebrero R, Martínez-Mendoza LJ, Rodriguez-Vega S, Aragão Börner R, Börner T, Muñoz R. Enhancement of biogas production rate from bioplastics by alkaline pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:154-161. [PMID: 37059039 DOI: 10.1016/j.wasman.2023.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The effect of alkali-based pretreatment on the methanization of bioplastics was investigated. The tested bioplastics included PHB [poly(3-hydroxybutyrate)], PHBH [poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)], PHBV [poly(3-hydroxybutyrate-co-3-hydroxyvalerate], PLA (polylactic acid), and a PLA/PCL [poly(caprolactone)] 80/20 blend. Prior to methanization tests, the powdered polymers (500-1000 μm) at a concentration of 50 g/L were subjected to alkaline pretreatment using NaOH 1 M for PLA and PLA/PCL, and NaOH 2 M for PHB-based materials. Following 7 days of pretreatment, the amount of solubilized carbon for PLA and its blend accounted for 92-98% of the total initial carbon, while lower carbon recoveries were recorded for most PHB-based materials (80-93%), as revealed by dissolved total organic carbon analysis. The pretreated bioplastics were then tested for biogas production by means of mesophilic biochemical methane potential tests. Compared to unpretreated PHBs, methanization rates of pretreated PHBs were accelerated by a factor of 2.7 to 9.1 with comparable (430 NmL CH4/g material feed) or slightly lower (15% in the case of PHBH) methane yields, despite featuring a 1.4-2.3 times longer lag phases. Both materials, PLA and the PLA/PCL blend, were only extensively digested when pretreated, yielding about 360-380 NmL CH4 per gram of material fed. Unpretreated PLA-based materials showed nearly zero methanization under the timeframe and experimental conditions tested. Overall, the results suggested that alkaline pretreatment can help to enhance the methanization kinetics of bioplastics.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sara Rodriguez-Vega
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Tim Börner
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
17
|
Mattelin V, Verfaille L, Kundu K, De Wildeman S, Boon N. A New Colorimetric Test for Accurate Determination of Plastic Biodegradation. Polymers (Basel) 2023; 15:polym15102311. [PMID: 37242886 DOI: 10.3390/polym15102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
As plastic waste is accumulating in both controlled waste management settings and natural settings, much research is devoted to search for solutions, also in the field of biodegradation. However, determining the biodegradability of plastics in natural environments remains a big challenge due to the often very low biodegradation rates. Many standardised test methods for biodegradation in natural environments exist. These are often based on mineralisation rates in controlled conditions and are thus indirect measurements of biodegradation. It is of interest for both researchers and companies to have tests that are more rapid, easier, and more reliable to screen different ecosystems and/or niches for their plastic biodegradation potential. In this study, the goal is to validate a colorimetric test, based on carbon nanodots, to screen biodegradation of different types of plastics in natural environments. After introducing carbon nanodots into the matrix of the target plastic, a fluorescent signal is released upon plastic biodegradation. The in-house-made carbon nanodots were first confirmed regarding their biocompatibility and chemical and photostability. Subsequently, the effectivity of the developed method was evaluated positively by an enzymatic degradation test with polycaprolactone with Candida antarctica lipase B. Finally, validation experiments were performed with enriched microorganisms and real environmental samples (freshwater and seawater), of which the results were compared with parallel, frequently used biodegradation measures such as O2 and CO2, dissolved organic carbon, growth and pH, to assess the reliability of the test. Our results indicate that this colorimetric test is a good alternative to other methods, but a combination of different methods gives the most information. In conclusion, this colorimetric test is a good fit to screen, in high throughput, the depolymerisation of plastics in natural environments and under different conditions in the lab.
Collapse
Affiliation(s)
- Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Lennert Verfaille
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Kankana Kundu
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | | | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| |
Collapse
|
18
|
Jin Y, Sun X, Song C, Cai F, Liu G, Chen C. Understanding the mechanism of enhanced anaerobic biodegradation of biodegradable plastics after alkaline pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162324. [PMID: 36813202 DOI: 10.1016/j.scitotenv.2023.162324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastics (BPs) tend to replace conventional plastics, which increases the amount of BP waste entering the environment. The anaerobic environment exists extensively in nature, and anaerobic digestion has become a widely used technique for organic waste treatment. Many kinds of BPs have low biodegradability (BD) and biodegradation rates under anaerobic condition due to the limitation of hydrolysis, so they still have harmful environmental consequences in anaerobic environment. There is an urgent need to find an intervention method to improve the biodegradation of BPs. Therefore, this study aimed to investigate the effectiveness of alkaline pretreatment in accelerating the thermophilic anaerobic degradation of ten widely used BPs, such as poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), thermoplastic starch (TPS), poly (butylene succinate-co-butylene adipate) (PBSA), cellulose diacetate (CDA), etc. The results showed that NaOH pretreatment significantly improved the solubility of PBSA, PLA, poly (propylene carbonate) (PPC), and TPS. Except for PBAT, pretreatment with an appropriate NaOH concentration could improve the BD and degradation rate. The pretreatment also reduced the lag phase in the anaerobic degradation of BPs such as PLA, PPC, and TPS. Specifically, for CDA and PBSA, the BD increased from 4.6 % and 30.5 % to 85.2 % and 88.7 %, with increments of 1752.2 % and 190.8 %, respectively. Microbial analysis indicated that NaOH pretreatment promoted the dissolution and hydrolysis of PBSA and PLA and the deacetylation of CDA, which contributed to rapid and complete degradation. This work not only provides a promising method for improving the degradation of BP waste but also lays the foundation for its large-scale application and safe disposal.
Collapse
Affiliation(s)
- Yan Jin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Sun
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Sourkouni G, Jeremić S, Kalogirou C, Höfft O, Nenadovic M, Jankovic V, Rajasekaran D, Pandis P, Padamati R, Nikodinovic-Runic J, Argirusis C. Study of PLA pre-treatment, enzymatic and model-compost degradation, and valorization of degradation products to bacterial nanocellulose. World J Microbiol Biotechnol 2023; 39:161. [PMID: 37067621 PMCID: PMC10110681 DOI: 10.1007/s11274-023-03605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples.
Collapse
Affiliation(s)
- Georgia Sourkouni
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany.
| | - Sanja Jeremić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Charalampia Kalogirou
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| | - Oliver Höfft
- Institute for Electrochemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Marija Nenadovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Vukasin Jankovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Divya Rajasekaran
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Pavlos Pandis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| | - Ramesh Padamati
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade (UB), Vojvode Stepe 444a,, 11042, Belgrade 152, Serbia
| | - Christos Argirusis
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678, Clausthal-Zellerfeld, Germany
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15773, Athens, Greece
| |
Collapse
|
20
|
Malik S, Maurya A, Khare SK, Srivastava KR. Computational Exploration of Bio-Degradation Patterns of Various Plastic Types. Polymers (Basel) 2023; 15:polym15061540. [PMID: 36987320 PMCID: PMC10056476 DOI: 10.3390/polym15061540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
Plastic materials are recalcitrant in the open environment, surviving for longer without complete remediation. The current disposal methods of used plastic material are inefficient; consequently, plastic wastes are infiltrating the natural resources of the biosphere. The mixed composition of urban domestic waste with different plastic types makes them unfavorable for recycling; however, natural assimilation in situ is still an option to explore. In this research work, we have utilized previously published reports on the biodegradation of various plastics types and analyzed the pattern of microbial degradation. Our results demonstrate that the biodegradation of plastic material follows the chemical classification of plastic types based on their main molecular backbone. The clustering analysis of various plastic types based on their biodegradation reports has grouped them into two broad categories of C-C (non-hydrolyzable) and C-X (hydrolyzable). The C-C and C-X groups show a statistically significant difference in their biodegradation pattern at the genus level. The Bacilli class of bacteria is found to be reported more often in the C-C category, which is challenging to degrade compared to C-X. Genus enrichment analysis suggests that Pseudomonas and Bacillus from bacteria and Aspergillus and Penicillium from fungi are potential genera for the bioremediation of mixed plastic waste. The lack of uniformity in reporting the results of microbial degradation of plastic also needs to be addressed to enable productive growth in the field. Overall, the result points towards the feasibility of a microbial-based biodegradation solution for mixed plastic waste.
Collapse
Affiliation(s)
- Sunny Malik
- Regional Centre for Biotechnology, Faridabad 121002, Haryana, India
| | - Ankita Maurya
- Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | - Sunil Kumar Khare
- Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | | |
Collapse
|
21
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|
22
|
Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023. [DOI: 10.3390/catal13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In recent years, the adoption of sustainable alternatives has become a powerful tool for replacing petroleum-based polymers. As a biodegradable alternative to petroleum-derived plastics, bioplastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. Meanwhile, their biodegradation is highly dependent on their environment. The leakage of bioplastics into the environment and their long degradation time frame during waste management processes are becoming major concerns that need further investigation. This review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments, and examines the biological and environmental factors involved in the process. Furthermore, the review highlights the need for further research on the long-term fate of bioplastics in natural and industrial environments. The roles played by enzymes as biocatalysts and metal compounds as catalysts through composting can help to achieve a sustainable approach to the biodegradation of biopolymers. The knowledge gained in this study will also contribute to the development of policies and assessments for bioplastic waste, as well as provide direction for future bioplastics research and development.
Collapse
|
23
|
Farghali M, Shimahata A, Mohamed IM, Iwasaki M, Lu J, Ihara I, Umetsu K. Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: Waste valorization of plastic containing food waste and rice husk. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|