1
|
Erdem Yayayürük A, Çankaya N, Yayayürük O. Greener Synthesis of Poly(LIM- co-DVB- co-AMPS): A Sustainable Approach to Methylene Blue Removal. ACS OMEGA 2024; 9:50147-50157. [PMID: 39741846 PMCID: PMC11683600 DOI: 10.1021/acsomega.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 01/03/2025]
Abstract
A novel environmentally friendly adsorbent, poly(limonene-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid, LIM-co-DVB-co-AMPS), was synthesized and applied for the adsorption of methylene blue from aqueous solutions in this study. The structure, morphology, and thermal stability of the green adsorbent were determined by the FTIR, SEM, TGA/DTA/DTG, and BET techniques, ζ potential, and elemental analysis. The efficiency of the adsorption process was improved with respect to several experimental conditions, viz., adsorbent dose, pH, and contact time. The adsorption process was found to fit very well with the Langmuir isotherm and the pseudo-second-order model. Benefiting from the higher number of surface sites, porous structure, and good surface area, poly(LIM-co-DVB-co-AMPS) particles exhibited a superior adsorption performance for MB with a Langmuir adsorption capacity of 98 mg g-1. The selectivity of the sorbent does not depend on the coexisting ions, and the sorbent is applicable in complex matrixes in the presence of these ions. The elution process was employed using ethanol within a 1.0 M hydrochloric acid (HCl) medium, leading to a remarkable usability exceeding 90% even after five consecutive adsorption/desorption cycles. Spike recovery experiments conducted using real water samples substantiate the practical applicability of the adsorbent. The high efficiency, utilization of cost-effective materials, and ease of fabrication, coupled with their selective nature and lower environmental impact through sorbent reuse, collectively confer superior advantages. These distinctive features render the environmentally benign adsorbent highly applicable for promising applications in the removal of methylene blue from aqueous solutions.
Collapse
Affiliation(s)
- Aslı Erdem Yayayürük
- Faculty
of Science, Department of Chemistry, Ege
University, İzmir 35100, Turkey
| | - Nevin Çankaya
- Vocational
School of Health Services-Oral and Dental Health Department, Uşak University, Uşak 64200, Turkey
| | - Onur Yayayürük
- Faculty
of Science, Department of Chemistry, Ege
University, İzmir 35100, Turkey
| |
Collapse
|
2
|
Kim JH, Lee T, Tsang YF, Moon DH, Lee J, Kwon EE. Functional use of carbon dioxide for the sustainable valorization of orange peel in the pyrolysis process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173701. [PMID: 38844232 DOI: 10.1016/j.scitotenv.2024.173701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taewoo Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
da Silva MD, Schnorr C, Lütke SF, Silva LFO, Manera C, Perondi D, Godinho M, Collazzo GC, Dotto GL. Citrus fruit residues as alternative precursors to developing H 2O and CO 2 activated carbons and its application for Cu(II) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63661-63677. [PMID: 37055691 DOI: 10.1007/s11356-023-26860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g-1, and a pore volume of around 0.25 cm3 g-1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g-1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L-1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.
Collapse
Affiliation(s)
- Mariele D da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Carlos Schnorr
- Universidad de La Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, , Atlántico, Colombia
| | - Sabrina F Lütke
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad de La Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, , Atlántico, Colombia
| | - Christian Manera
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Daniele Perondi
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Marcelo Godinho
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Gabriela C Collazzo
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|