1
|
Nalladiyil A, P S, Babu GLS. Evaluation of energy recovery, pollutant removal, and microbial dynamics in aged refuse bioreactor for landfill leachate treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123563. [PMID: 39642823 DOI: 10.1016/j.jenvman.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/20/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The study evaluates the effectiveness of aged refuse bioreactors (ARBs) in treating young landfill leachate and recovering energy through biogas production. Over 90 days, duplicate reactors (ARB1 and ARB2) were operated through three 30-day recirculation cycles under anaerobic conditions, utilizing aged refuse from a closed landfill in Bangalore, India. The study was extended by an additional 900 days without further leachate addition to assess long-term gas generation potential. Cumulative gas production amounted to 1384 L in ARB1 and 1182 L in ARB2, with maximum methane production per gram of chemical oxygen demand (COD) recorded at 0.474 L and 0.387 L, respectively. Variability in biogas production was correlated with differences in volumetric moisture content, which also influenced pollutant removal and led to significant improvements in the leachate pollution index, decreasing from 24.4 to 12.84 in ARB1 and to 16.46 in ARB2. COD levels were decreased by 70-90%, and TDS by 46-63%. Heavy metal concentrations, including copper, chromium, cadmium, lead, zinc, and nickel, were reduced by 95-99% to acceptable levels, though increases in ammonia and total phosphorus were noted. Key mechanisms in the ARB included anaerobic degradation, adsorption, oxidation-reduction reactions, and precipitation. In the fourth cycle, without leachate recirculation, gas production reached 320 L in ARB1 and 358.8 L in ARB2, indicating effective conversion of carbon retained from aged refuse and leachate treatment into biogas. Microbial analysis identified dominant communities of Methanosarcina and Methanomicrobia. Overall, this study demonstrates that ARBs are effective in treating young landfill leachate and recovering energy, offering insights into sustainable waste management.
Collapse
Affiliation(s)
- Anusree Nalladiyil
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India.
| | - Sughosh P
- Dept. of Civil Engineering, Manipal Institute of Technology, MAHE, Manipal, 576104, India
| | - G L Sivakumar Babu
- Dept. of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Liu Z, Sha H, Zhu P, Zheng H, Wang J, He J, Ma Y, An F, Liu X, Guo Z. Leachate derived humic-like substances drive the variation in microbial communities in landfill-affected groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121000. [PMID: 38669889 DOI: 10.1016/j.jenvman.2024.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Landfills are commonly used for waste disposal in many countries, and pose a significant threat of groundwater contamination. Dissolved organic matter (DOM) plays a crucial role as a carbon and energy source, supporting the growth and activity of microorganisms. However, the changes in the DOM signature and microbial community composition in landfill-affected groundwater and their bidirectional relationships remain inadequately explored. Herein, we showed that DOM originating from more recent landfills mainly comprises microbially produced substances resembling tryptophan and tyrosine. Conversely, DOM originating from older landfills predominantly comprises fulvic-like and humic-like compounds. Leachate leakage increases microbial diversity and richness and facilitates the transfer of foreign bacteria from landfills to groundwater, thereby increasing the vulnerability of the microbial ecosystem in groundwater. Deterministic processes dominated the assembly of the groundwater microbial community, while stochastic processes accounted for an increased proportion of the microbial community in the old landfills. The dominant phyla observed in groundwater were Proteobacteria, Bacteroidota, and Actinobacteriota, and humic-like substances play a crucial role in driving the variation in microbial communities in landfill-affected groundwater. Predictions using PICRUSt2 suggested significant associations between various metabolic pathways and microbial communities, with the Kyoto Encyclopedia of Genes and Genomes pathway "Metabolism" being the most predominant. The findings contribute to advancing our understanding of the transformation of DOM and its interplay with microbial communities and can serve as a scientific reference for decision-making regarding groundwater pollution monitoring and remediation.
Collapse
Affiliation(s)
- Zhenhai Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Haoqun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Panpan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongmei Zheng
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Jianfei Wang
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Jun He
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Fengxia An
- China Energy Science and Technology Research Institute Co. Ltd., Nanjing, 210023, China
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zheng Guo
- Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing, 100081, China.
| |
Collapse
|
3
|
Bai Y, Li K, Cao R, Xu H, Wang J, Huang T, Wen G. Changes of characteristics and disinfection by-products formation potential of intracellular organic matter with different molecular weight in metalimnetic oxygen minimum. CHEMOSPHERE 2024; 354:141718. [PMID: 38490607 DOI: 10.1016/j.chemosphere.2024.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Metalimnetic oxygen minimum (MOM) occurs in reservoirs or lakes due to stratification and algal blooms, which has low dissolved oxygen (DO) levels and leads to the deterioration of water quality. The transformation mechanism and the impact on the water quality of intracellular organic matter (IOM) derived from algae are poorly understood under MOM conditions. In this study, IOM extracted by Microcystis aeruginosa was divided into five components according to molecular weight (MW), and the changes of characteristics and correlated disinfection by-products formation potential (DBPFP) were analyzed and compared under MOM conditions. The removal efficiency of dissolved organic carbon (DOC) in the <5 kDa fraction (66.6%) was higher than that in the >100 kDa fraction (41.8%) after a 14-day incubation under MOM conditions. The same tendency also occurred in Fmax and DBPFP. The decrease in Fmax was mainly due to the decline in tryptophan-like and tyrosine-like for all IOM fractions. The diversity of microorganisms degrading the MW > 100 kDa fraction was lower than others. Besides low MW fractions, these findings indicated that more attention should be paid to high MW fractions which were resistant to biodegradation under MOM conditions during water treatment.
Collapse
Affiliation(s)
- Yuannan Bai
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
4
|
Guo S, Yu W, Zhao H, Lai C, Bian S, Jin P, Liang S, Yuan S, Huang L, Wang S, Duan H, Wang F, Yang J. Numerical simulation to optimize passive aeration strategy for semi-aerobic landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:676-685. [PMID: 37866111 DOI: 10.1016/j.wasman.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Passive aeration has been proven to be efficient for oxygen supply in landfill. The combination of passive aeration and semi-aerobic landfill offers a cost-effective and energy-efficient approach to solid waste (SW) treatment. However, determining the optimal strategy for this combination has remained unclear. This study aimed to investigate the strategy of passive aeration in a semi-aerobic landfill using numerical simulation methods. A model coupled hydrodynamic model and compartment model for degradation of SW was implemented. The accuracy was well validated by comparing measured and simulated results in a pilot-scale landfill. Compared with natural convection, passive aeration by funnel caps could increase air input by 20 %. By simulating volumetric fraction distribution of CO2, CH4 and O2 in landfill, an orthogonal experiment including 4 factors was designed to identify that the diameter of tubes (DT), the spacing between tubes (ST) and the landfill depth (LD) have substantial impacts on aerobic zone ratio (AZR) of landfill. But the diameter of gas ports (DGP) has an indiscernible effect. The optimized factors were determined to be as follows: DT = 0.3 m, ST = 15.0 m, DGP = 0.05 m, and LD = 4.0 m, under which the semi-aerobic landfill could enhance SW degradation. Large diameter and spacing of tubes are favorable to improve the AZR at the top of the landfill, and the aerobic zone mainly exists near the ventilation tubes. These findings contribute to the development of more efficient and sustainable solid waste treatment strategies in semi-aerobic landfill.
Collapse
Affiliation(s)
- Shuai Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China.
| | - Hongyang Zhao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Changfei Lai
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pan Jin
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Songlin Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Huabo Duan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Feifei Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| |
Collapse
|