1
|
Xia H, Pei W, Huang K, Shi J, Huan G. Synergistic integration of vermicomposting and struvite crystallization for sustainable phosphorus recovery from sewage sludge: A low-carbon approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 204:114926. [PMID: 40449306 DOI: 10.1016/j.wasman.2025.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/29/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The conventional magnesium ammonium phosphate (MAP) crystallization method for phosphorus recovery from sewage sludge faces significant challenges, including high operational costs and limited inorganic phosphorus release efficiency. To address these limitations, this study introduces an innovative integrated approach combining vermicomposting with MAP crystallization (VCMAP). The results showed that vermicomposting pretreatment significantly enhanced nutrient availability, yielding a 73.58 % increase in ammonium nitrogen and a 16.32 % increase in orthophosphate concentration compared to raw sludge. In addition, fresh vermicompost samples exhibited superior performance, releasing 96.65 % more orthophosphate than their air-dried counterparts. Response surface methodology (RSM) identified the optimal recovery conditions from vermicompost using MAP as pH = 9.3, Mg: N: P = 1.1:1.3:1, and agitation time (AT) of 100 min. Notably, calcium ions exerted a more pronounced influence on the VCMAP process, compared to iron and aluminum ions. The integrated VCMAP system demonstrated remarkable efficiency, achieving a 226 % increase in struvite recovery (8.83 kg/t sludge) and capturing 20.28 % of total phosphorus within 10 days of vermicomposting pretreatment. Moreover, the process exhibited a negative carbon footprint of -56.32 kg CO2/t sludge, indicating its potential for carbon credit generation. These findings establish the VCMAP as a promising low-carbon technology for enhanced phosphorus recovery from sewage sludge, offering significant improvements over conventional MAP approaches.
Collapse
Affiliation(s)
- Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions 730070, China
| | - Wentao Pei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions 730070, China.
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guohui Huan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
2
|
Rombel A, Różyło K, Ok YS, Oleszczuk P. Influence of biochar characteristics on polycyclic aromatic hydrocarbons content during co-composting of sewage sludge. BIORESOURCE TECHNOLOGY 2025; 423:132220. [PMID: 39954822 DOI: 10.1016/j.biortech.2025.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
This study examined how biochar (BC) made from willow or sewage sludge at 500 °C or 700 °C affects polycyclic aromatic hydrocarbons (PAHs) during composting of sewage sludge with wheat straw. BC addition impacted both total (Ctot) and freely dissolved (Cfree) PAHs, with effects dependent on pyrolysis temperature and, to a lesser extent, feedstock. Greater losses (both percentage and absolute) of Ctot PAHs occurred with low-temperature BC than high-temperature BC. The highest reduction was seen with sewage sludge-derived BC produced at 500 °C. For Cfree PAHs, low-temperature BCs decreased bioavailability more than high-temperature BCs, with willow-derived BCs being more effective than sewage sludge-derived BCs. Results suggest BC's effectiveness in reducing PAHs depends mainly on feedstock for Ctot PAHs, but more on pyrolysis temperature for Cfree PAHs. BC's capacity to reduce contaminants in compost could back regulations promoting its use in waste management and soil improvement.
Collapse
Affiliation(s)
- Aleksandra Rombel
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Krzysztof Różyło
- Department of Agricultural Ecology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; International ESG Association (IESGA), Seoul 06621, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin, Poland.
| |
Collapse
|
3
|
Lin J, Wang D, Kong L, Mai L, Peng S, Li Q, Wu Y, Yuan J, Li G, Meng Z. Oriented regulation of earthworm production and vermicompost quality by carbon bioavailability management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176238. [PMID: 39277006 DOI: 10.1016/j.scitotenv.2024.176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Vermicomposting is an efficient bioconversion technology for recycling nutrients from organic waste materials. The biodegradability of raw materials has a significant impact on the earthworm transformation product. However, the management of carbon bioavailability is often overlooked during the vermicomposting process due to the varying degradability of C-rich source in different organic waste. This research aims to investigate the impact of different bioavailable carbon compositions on vermicomposting and to develop a strategy for efficient carbon management. The study involved systematic vermicomposting using four different biodegradable carbon sources (pineapple peels, rice straw, tomato straw, and sawdust) with varying carbon‑nitrogen ratios (ranging from 24 to 42). The earthworm production and vermicompost quality were comprehensively evaluated, along with the influence of carbon components on microbial community structure. The results indicated that the optimal vermicomposting treatments were achieved at PCM24, RCM30, TCM30, and MCM30 treatments. Maintaining an approximate ratio of 1:(0.5-1.3) between available and recalcitrant carbon components based on the optimal carbon‑nitrogen ratio was found to be optimal for regulating vermicomposting products. Increasing the proportion of available carbon enhanced the quality of vermicompost fertilizer, while a higher proportion of recalcitrant carbon could improve earthworm biomass production efficiency. Labile carbon proportion I (LCP1) and available carbon component (ACC) were identified as key indicators in influencing the formation of microbial community structure. Different carbon compositions led to the specific development and formation of microbial communities, further resulting in significant variations in vermicompost quality under the mediation of microbes. This study, for the first time, clarifies the impact of vermicomposting performance and microbial community from the perspective of carbon bioavailability, which is of great significance for the oriented regulation the vermicomposting efficiency and product in practice.
Collapse
Affiliation(s)
- Jiacong Lin
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research station, National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Dingmei Wang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lingwei Kong
- College of Resource and Environmental Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwen Mai
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shiliang Peng
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research station, National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Yupeng Wu
- College of Resource and Environmental Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yuan
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571199, China
| |
Collapse
|
4
|
Gong X, Xu J, Zou L, Huang J, Zhang B, Yang X, Jiang J. Evaluation of green waste, green waste compost and cow dung as amendments for white wine distillers' grains vermicomposting. ENVIRONMENTAL TECHNOLOGY 2024; 45:5291-5304. [PMID: 38084650 DOI: 10.1080/09593330.2023.2288658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2024]
Abstract
The application of organic additives is an efficient strategy to promote the vermicomposting of organic wastes. This study investigated the changes in earthworm growth, nutrients, enzyme activities, microbial composition, and seedling growth during 60 days of vermicomposting of white wine distillers' grains (WWDG) mixed (50:50, w/w) with green waste (GW), green waste compost (GWC), or cow dung (CD). Our data showed that GW, GWC, and CD addition significantly enhanced the survival rate (73.33%-89.17%), growth, and reproduction of earthworms compared to the control treatment. The degradation rate of TOC, the increasing rate of nutriments (total N, total P, total K, available P, available K, humic acid, NH4+, NO3-), and the germination index were significantly higher in the additive treatments than in the control treatment. Dehydrogenase, phosphatases, and urease activities were significantly elevated in the vermicompost amended with additives. The additives remarkably stimulated bacteria, such as Streptomyces, Steroidobacter, Bacillus, Luteibacter, and Rhodanobacter, etc., which were closely related to the biocontrol of phytopathogens and the decomposing recalcitrant substances. Moreover, additives significantly promoted the generation and growth parameters of tomato and lettuce seedlings when compared with the control. In summary, these results indicated that all three additives facilitated the vermicomposting of WWDG and improved the compost quality by enhancing earthworm and enzyme activities as well as altering compost bacterial community, especially when the GWC addition yields the best compost quality and shows strong potential for future application. This study developed a new method for improving WWDG utilization rate and it will promote organic waste recycling in China.
Collapse
Affiliation(s)
- Xiaoqiang Gong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jiao Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Bo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Xianming Yang
- Beijing No.4 High School, Beijing, People's Republic of China
| | - Junxian Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
5
|
Yu Z, Zhou M, Zhang H, Yuan L, Lv P, Wang L, Zhang J. Changes in Cd forms and Cd resistance genes in municipal sludge during coupled earthworm and biochar composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117179. [PMID: 39405965 DOI: 10.1016/j.ecoenv.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
There is a close relationship between microbial activity and the bioavailability of heavy metals, and heavy metal resistance genes can affect the activity of heavy metals. To evaluate the effects of coupled earthworm and biochar composting on Cd forms and Cd resistance genes in sludge, the BCR continuous extraction method was applied to classify the Cd forms, and Cd resistance genes were quantitatively determined with heavy metal gene chip technology. The results showed that the changes in earthworm biomass during composting were sufficiently fitted by logistic models and that adding biochar effectively increased earthworm biomass. The coupled treatment of earthworms and biochar promoted the degradation of sludge. The coupled treatment of earthworms and biochar reduced the proportion of acid-extractable and reducible Cd relative to total Cd, increased the proportion of oxidized and residual Cd relative to total Cd, transformed Cd forms from active to inert, and reduced the gene copy number of Cd resistance genes (czcA, czcB, czcC, czcD, czcS, czrA, czrR, cadA, and zntA). czcB was identified as a key gene that affected acid-extractable Cd and residual Cd contents; czcA, czcB, czcD, and czcS were identified as key genes that affected the reducible Cd content; czrR and cadA were identified as key genes that affected the oxidized Cd content; and czcC was identified as a key gene that affected the total Cd content. Cd resistance genes could directly affect the Cd form or indirectly affect Cd form through their interactions with each other.
Collapse
Affiliation(s)
- Zhimin Yu
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Meng Zhou
- State Key Laboratory f Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| | - Hongwei Zhang
- Beidahuang Agricultural Reclamation Group Co., Ltd, Harbin 150000, PR China.
| | - Lei Yuan
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Pin Lv
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Limin Wang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| |
Collapse
|
6
|
Zhang Y, Liu L, Huang G, Yang C, Tian W, Ge Z, Zhang B, Wang S, Zhang H. Enhancing humification and microbial interactions during co-composting of pig manure and wine grape pomace: The role of biochar and Fe 2O 3. BIORESOURCE TECHNOLOGY 2024; 393:130120. [PMID: 38029803 DOI: 10.1016/j.biortech.2023.130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Phenol-rich wine grape pomace (WGP) improves the conversion of pig manure (PM) into humic acid (HA) during composting. However, the impact of using combinations of Fe2O3 and biochar known to promote compost maturation remains uncertain. This research explored the individual and combined influence of biochar and Fe2O3 during the co-composting of PM and WGP. The findings revealed that Fe2O3 boosts microbial network symbiosis (3233 links), augments the HA yield to 3.38 by promoting polysaccharide C-O stretching, and improves the germination index to 124.82 %. Limited microbial interactions, increased by biochar, resulted in a lower HA yield (2.50). However, the combination weakened the stretching of aromatics and quinones, which contribute to the formation of HA, resulting in reduced the humification to 2.73. In addition, Bacillus and Actinomadura were identified as pivotal factors affecting HA content. This study highlights Fe2O3 and biochar's roles in phenol-rich compost humification, but combined use reduces efficacy.
Collapse
Affiliation(s)
- Yingchao Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Liqian Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Guowei Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Changhao Yang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenxin Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhenyu Ge
- Leading Bio-agricultural Co. Ltd. and Hebei Agricultural Biotechnology Innovation Center, Qinhuangdao 066004, PR China
| | - Baohai Zhang
- Hemiao Biological Technology Co., Ltd, Qinhuangdao 066000, PR China
| | - Sufeng Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Wang D, Mai L, Yu Z, Wang K, Meng Z, Wang X, Li Q, Lin J, Wu D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. BIORESOURCE TECHNOLOGY 2024; 391:129947. [PMID: 37914056 DOI: 10.1016/j.biortech.2023.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Studies on compost dissolved organic matter (DOM) previously focus on its composition and humification, without considering DOM bioavailability to understand compost fertility. To decipher the fertility basis of compost, DOM bioavailability in thermophilic compost (TC) and vermicompost (VC) was investigated and linked with its molecular composition. Results showed that DOM bioavailability of VC (36 % BDOC) was generally higher than that of TC (22 % BDOC) due to containing more tannin-like substances. Inversely, only lipid-/carbohydrate-/protein-like substances contributed to DOM bioavailability in TC. Moreover, these differences of bioavailability expanded with C/N decreased in composting materials. Specifically, the %BDOC of VC with N-rich materials (C/N < 25) was 2.1-3.0 times higher than that in TC, while it was only 1.2-1.4 times for C-rich materials (C/N < 25), because N-surplus facilitated the formation of O-/N-containing aromatics (e.g., CHON and tannin) in VC, but inhibited the decomposition of organic materials into small bioactive molecules in TC.
Collapse
Affiliation(s)
- Dingmei Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Liwen Mai
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kongtan Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Institute of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Jiacong Lin
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| |
Collapse
|
8
|
Guo L, Peng L, Li J, Zhang W, Shi B. Graphitic N-doped biochar for superefficient uranium recycling from nuclear wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163462. [PMID: 37068665 DOI: 10.1016/j.scitotenv.2023.163462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
N-doped biochar (AL-N/BC) prepared by pyrolyzing lignin in various temperatures manifested superefficient performance for uranium (U) recycling from nuclear wastewater. The optimist AL-N/BC-700 showed higher adsorption capacity of 25,000 mg/g and faster kinetics of 4100 g·min-1·mg-1 than the most of reported adsorbents, and excellent adsorption-desorption capability (adsorption rate > 90 % and desorption rate > 70 % after 12 cycles). Moreover, the high applicability of AL-N/BC-700 was verified by its superefficient U(VI) adsorption performance in a broad working pH range, various water matrices, and high irradiation stability. Furthermore, the adsorption mechanism discloses the significant role of graphitic N, rather than pyridinic N or pyrrolic N, for U(VI) adsorption. Overall, this work not only presents an applicable approach to alleviate the increasingly serious energy crisis via recycling U(VI) from nuclear wastewater, but also enriches the method of synthesizing N-doped materials for U(VI) adsorption.
Collapse
Affiliation(s)
- Lijun Guo
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Liangqiong Peng
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Jiheng Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|