1
|
Yihan W, Jinjin D, Yingqi W, Guanai M, Xiwu Z. Advances in plant essential oils and drug delivery systems for skincare. Front Pharmacol 2025; 16:1578280. [PMID: 40313613 PMCID: PMC12044306 DOI: 10.3389/fphar.2025.1578280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
Background Essential oils, often referred to as "liquid gold," are renowned for their broad biological activity. Ancient Egyptians used essential oils' antibacterial and antiseptic effects to preserve mummies, ancient Greeks used olive oil for sun protection, and ancient Chinese used essential oils to treat wounds. When essential oils are applied to the facial skin, their potent anti-inflammatory, antioxidant, and antibacterial pharmacological characteristics provide various benefits, including sunscreen, skin-whitening, and anti-aging effects. Purpose This paper aims to summarize the application of plant essential oil in skin whitening, anti-inflammatory, antioxidant and antibacterial in recent years, and deeply analyzes the internal relationship between essential oil and modern drug delivery system, expounds how to overcome the limitations of essential oil through specific drug delivery system, to enhance its biological activity and stability, realize sustained release and reduce its potential toxicity, and also discusses the positive effects of essential oil on brain function through olfactory pathway, emphasizes the possible safety risks in the use of essential oil, and puts forward corresponding suggestions for use. Methods Using keywords such as "essential oils," "antioxidant," "anti-tyrosinase," Antibacterial Effects and anti-inflammatory," "anti-anxiety," and "drug carrier delivery systems," a comprehensive search was conducted in the PubMed, CNKI, Baidu, and Wanfang databases to summarize articles from the past 5 years. Further screening was performed to select studies demonstrating the efficacy of essential oils through topical or external application. Results Various essential oils showed their efficacy as strong oxidants, antibacterial agents, anti-inflammatory agents, and skin-whitening agents. Combined with a new drug delivery system, it not only enhances the biological activity of essential oil but also reduces the inherent defects of essential oil, such as volatility, irritation, and toxicity, and has a targeted delivery effect. At the same time, the integration of essential oil into skin care products can make use of the dual functions of smell and the epidermal system to nourish and repair the skin and maximize the pharmacological effects of essential oil. Conclusion This review delves into the application of essential oils and delivery systems, advocating for a broader integration of natural plant resources with modern technology. By strategically utilizing essential oils, we can promote the sustainable development of the global economy. However, extensive clinical trials are still required to evaluate the effectiveness and safety of essential oil delivery systems.
Collapse
Affiliation(s)
- Wang Yihan
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Dou Jinjin
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- The Four Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wang Yingqi
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Mu Guanai
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhang Xiwu
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Caren J, Zhu YC, Read QD, Du Y. Risk Assessment of Effects of Essential Oils on Honey Bees ( Apis mellifera L.). INSECTS 2025; 16:303. [PMID: 40266795 PMCID: PMC11942678 DOI: 10.3390/insects16030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
The toxicity of synthetic pesticides to non-target organisms has prompted a shift towards more environmentally friendly agricultural pest control methods, including the use of essential oils as possible biopesticides. Before these natural chemicals can be widely adopted for protecting food supplies and human health, it is crucial to evaluate their impacts on pollinators, such as honey bees. In this study, we examined the effects of one commercially available essential oil mixture (EcoTec+) and four essential oil components (β-bisabolene, cinnamaldehyde, 1,8-cineole, and eugenol) on honey bee workers using feeding or spray treatment. We then assessed the responses of esterase (EST), glutathione-S-transferase (GST), acetylcholine esterase (AChE), and P450. EcoTec+ increased the P450 transcript, while bisabolene inhibited EST and AChE, increased GST, and caused a mixed P450 response without being lethal. Cinnamaldehyde exhibited toxicity when ingested, suppressing P450 and eliciting a mixed response in AChE. Cineole inhibited EST but caused a mixed P450 response. Eugenol suppressed EST and AChE and was toxic on contact. We also assayed combinations of each compound with four synthetic formulations representative of the major pesticide categories, though no significant interactions were found. Overall, the essential oils tested did not cause acute lethal toxicity to honey bees; however, their biochemical effects varied, mostly remaining sublethal. These findings suggest that these essential oils could be considered safe for use around honey bees.
Collapse
Affiliation(s)
- Joel Caren
- Jamie Whitten Delta States Research Center, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA; (J.C.); (Y.D.)
| | - Yu-Cheng Zhu
- Jamie Whitten Delta States Research Center, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA; (J.C.); (Y.D.)
| | - Quentin D. Read
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Raleigh, NC 27606, USA;
| | - Yuzhe Du
- Jamie Whitten Delta States Research Center, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA; (J.C.); (Y.D.)
| |
Collapse
|
3
|
Baz MM, El-Tabakh MAM, Selim A, Alasmari SM, Alkhaibari AM, Alruhaili MH, Gattan HS, Abdelkhalek HF. Chemical composition and bio-efficacy of agro-waste plant extracts and their potential as bioinsecticides against Culex pipiens mosquitoes. Parasitol Int 2025; 104:102968. [PMID: 39271003 DOI: 10.1016/j.parint.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Mosquitoes are considered one of the most lethal creatures on the planet and are responsible for millions of fatalities annually through the transmission of several diseases to humans. Green trash is commonly employed in agricultural fertilizer manufacturing and microbial bioprocesses for energy production. However, there is limited information available on the conversion of green waste into biocides. This study investigates the viability of utilizing green waste as a new biopesticide against Culex pipiens mosquito larvae. The current study found that plant extracts from Punica granatum (98.4 % mortality), Citrus sinensis (92 % mortality), Brassica oleracea (88 % mortality), Oryza sativa (81.6 % mortality), and Colocasia esculenta (53.6 % mortality) were very good at killing Cx. pipiens larvae 24 h post-treatment. The LC50 values were 314.43, 370.72, 465.59, 666.67, and 1798.03 ppm for P. granatum, C. sinensis, B. oleracea, O. sativa, and C. esculenta, respectively. All plant extracts, particularly P. granatum extract (14.93 and 41.87 U/g), showed a significant reduction in acid and alkaline phosphate activity. Additionally, pomegranate extract showed a significant decrease (90 %) in field larval density, with a stability of up to five days post-treatment. GC-MS results showed more chemical classes, such as terpenes, esters, fatty acids, alkanes, and phenolic compounds. HPLC analysis revealed that the analyzed extracts had a high concentration of phenolic and flavonoid components. Moreover, there are many variations among these plants in the amount of each compound. The docking interaction showed a simulation of the atomic-level interaction between a protein and a small molecule through the binding site of target proteins, explaining the most critical elements influencing the enzyme's activity or inhibitions. The study's findings showed that the various phytochemicals found in agro-waste plants had high larvicidal activity and provide a safe and efficient substitute to conventional pesticides for pest management, as well as a potential future in biotechnology.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| | | | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988 Najran, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Heba F Abdelkhalek
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
4
|
Kunnathattil M, Narayanankutty A, Visakh NU, Pathrose B, Punathil T, Kaimal SG. Phytochemical Characterization, Fumigant and Contact Toxicity Activities of Four Essential Oils Against Eriophyid Gall Mite, Aceria pongamiae Keifer (Acarina: Eriophyidae). Chem Biodivers 2024; 21:e202401535. [PMID: 39141828 DOI: 10.1002/cbdv.202401535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Plant-derived essential oils (EO) offer a natural alternative to chemical pesticides for eco-friendly pest control approaches. Aceria pongamiae Keifer, a notorious pest that affects Pongamia pinnata (L.) Pierre has mainly been controlled using synthetic acaricides leading to resistance development and environmental issues. EOs provide a natural and biodegradable option for pest control, with a unique mode of action. This study evaluates the acaricidal efficacy of EOs-eucalyptus Eucalyptus maculata Hook (EEO), lavender Lavandula angustifola L. (LEO), peppermint Mentha piperita L. (PEO), and black pepper Piper nigrum L. (BPEO) against A. pongamiae for the first time. We investigated the biological activity of EOs using fumigation and contact toxicity assays at concentrations ranging from 0.1 to 1 % and 0.6 to 0.9 % respectively, overexposure periods of 24, 48 and 72 h. Chemical characterization of EOs was performed using GC-MS analysis. Eucalyptol (62.88 %), linalyl acetate (39.11 %), menthol (44.35 %), and caryophyllene (32.77 %) were the main components of EEO, LEO, PEO and BPEO respectively. After 24 h of observation, EEO (LC50=1.01 %) and after 48 and 72 h, PEO had the highest fumigant toxicity (LC50=0.71 and 0.29 % respectively). The BPEO showed the most contact toxicity after 24, 48 and 72 h (LC50=0.92, 0.68 and 0.46 % respectively). This work reinforces the selection of adequate essential oils for implementation in future pest control strategies.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- PG & Research Department of Zoology, Govt. College Madappally (Affiliated to University of Calicut), Calicut, 673102, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, 673008, India
| | - Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur, 680656, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur, 680656, India
| | - Thejass Punathil
- PG & Research Department of Zoology, Govt. College Madappally (Affiliated to University of Calicut), Calicut, 673102, India
| | - Sangeetha G Kaimal
- Department of Zoology, Providence Women's College (Autonomous), Calicut, 673009, India
| |
Collapse
|
5
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
6
|
Paul A, Visakh NU, Pathrose B, Mori N, Baeshen RS, Shawer R. Exploring the chemical characterization and insecticidal activities of Curcuma angustifolia roxb . leaf essential oils against three major stored product insects. Saudi J Biol Sci 2024; 31:103986. [PMID: 38623076 PMCID: PMC11017047 DOI: 10.1016/j.sjbs.2024.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Botanical pesticides are safe and widely used in pest management. Curcuma angustifolia belongs to the family Zingiberaceae and is a rhizomatous medicinal herb. Following rhizome harvesting, leaves are discarded as waste. However, they can be effectively utilized by extracting essential oils, which are potential biopesticides. The aim of the study is to evaluate the efficacy of the leaf essential oil of Curcuma angustifolia as a potential biopesticide against three stored grain pests, Lasioderma serricorne, Tribolium castaneum, and Callasobruchus chinensis, by their contact, fumigant, and repellent activities. The leaves yield 0.39 ± 0.02 % of oil by hydrodistillation. GC-MS/MS characterization identified curzerenone (18.37 %), geranyl-p-cymene (17.32 %), α-elemenone (13.59 %), eucalyptol (7.58 %) as the main constituents. When exposed to different concentrations of C. angustifolia oil, the test insect displayed noticeably high repellency rates. It also showed better contact toxicity at 24 h, LC50 = 0.22 mg/cm2 for cigarette beetle, LC50 = 0.64 mg/cm2 for red flour beetle, LC50 = 0.07 mg/cm2 for pulse beetle) and fumigation toxicities (LC50 = 10.8 mg/L air at 24 h, for cigarette, LC50 = 29.5 mg/L air for red flour beetle, LC50 = 7.9 mg/L air for pulse beetle). Additionally, a phytotoxicity study was done on paddy seeds, and the results showed no effect on seed germination or seedling growth. It was evident from this study that C. angustifolia oil from waste leaves can be utilized as a botanical pesticide to manage the adults of these storage pests.
Collapse
Affiliation(s)
- Angel Paul
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Naduvilthara U. Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Nicola Mori
- Department of Biotechnology, University of Verona, 37114, Verona, Italy
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Rady Shawer
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
7
|
Laurie S, Ainslie L, Mitchell S, Morimoto J. Turmeric shortens lifespan in houseflies. FRONTIERS IN INSECT SCIENCE 2024; 4:1376011. [PMID: 38660018 PMCID: PMC11040687 DOI: 10.3389/finsc.2024.1376011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, Musca domestica. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.
Collapse
Affiliation(s)
- Sophie Laurie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leah Ainslie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sharon Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen, United Kingdom
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Aisha K, Visakh NU, Pathrose B, Mori N, Baeshen RS, Shawer R. Extraction, Chemical Composition and Insecticidal Activities of Lantana camara Linn. Leaf Essential Oils against Tribolium castaneum, Lasioderma serricorne and Callosobruchus chinensis. Molecules 2024; 29:344. [PMID: 38257257 PMCID: PMC10819012 DOI: 10.3390/molecules29020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Storage pests and the food spoilage they cause are problems of great concern. Using essential oil obtained from different plants as an insecticide against these storage pests can be considered an environmentally friendly pest management option. Lantana camara Linn. (family Verbenaceae) is a flowering species, and is also a noxious weed that can proliferate well in nearly all geographical habitats. A biopesticide derived from the essential oil extracted from this plant can offer an effective solution for controlling storage pests. The goal of this study is to extract and analyse the chemical composition of essential oil obtained from L. camara leaves, and assess its effectiveness as a bioactive substance against three storage pests: Tribolium castaneum, Lasioderma serricorne, and Callosobruchus chinensis. The yield of essential oil extracted from L. camara leaves was about 0.24 ± 0.014%. By employing the GC-MS technique, the major phytochemicals contained in L. camara leaf essential oil were identified as caryophyllene (69.96%), isoledene (12%), and ɑ-copaene (4.11%). The essential oil exhibited excellent fumigant toxicity (LC50 of 16.70 mg/L air for T. castaneum, 4.141 mg/L air for L. serricorne and 6.245 mg/L air for C. chinensis at 24 h), contact toxicity (LC50 of 8.93 mg/cm2 for T. castaneum, 4.82 mg/cm2 for L. serricorne and 6.24 mg/cm2 for C. chinensis after 24 h) along with effective repellent activity towards the test insects. In addition, the oil showed no significant phytotoxicity on the germination of paddy seeds. This presents the potential to utilize a weed in developing a biopesticide for effectively managing stored product insects because of its strong bioactivity.
Collapse
Affiliation(s)
- Kolapparamban Aisha
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| | - Naduvilthara U. Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| | - Nicola Mori
- Department of Biotechnology, University of Verona, 37114 Verona, Italy
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Rady Shawer
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|