1
|
Bhatia SK, Gurav R, Yang YH. A review on waste activated sludge pretreatment for improved volatile fatty acids production and their upcycling into polyhydroxyalkanoates. Int J Biol Macromol 2025; 308:142562. [PMID: 40154714 DOI: 10.1016/j.ijbiomac.2025.142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Waste activated sludge (WAS), a byproduct of wastewater treatment (WWTPs) facilities is challenging to manage because of its high organic content. Most of WAS is managed via anaerobic digestion (AD) to produce biogas, which is not deemed economically viable. The AD of WAS into volatile fatty acids (VFA) and their subsequent upcycling into polyhydroxyalkanoates (PHA) is gaining popularity due to their high value and uses. However, the fundamental issue with WAS is its low solubility, and pretreatment is required to increase it. Pretreatment disintegrates sludge floc and enhances its solubility, supports acetogens, and inhibits methanogens, leading to increased VFA synthesis in the AD process. The key factors influencing VFA yield include the size of the sludge granules, the mixing rate, and the presence of resistant organic components. Fermented broth containing VFA from AD can be utilized directly as a feedstock for microbial fermentation to produce PHA using both pure as well as mixed cultures. Utilisation of mixed cultures is useful since they are robust, able to consume a wide range of substrates, and do not require sterility. In addition, the VFA, which is made up of various organic acids, impacts the structure, productivity, characteristics, and type of PHA produced by microbial communities. Considering the importance of WAS management through VFA production and its integration with PHA production process this review article discusses the WAS pretreatment strategies, various factors that influence the AD process, trends in VFA to PHA production technologies with challenges, and possible solutions for integrated process development.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Vázquez-Vázquez B, Lazzari M, Hospido A. Terrestrial characterization factors for bio- and fossil-based plastics: microplastics ingestion and additives release. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 196:106-114. [PMID: 40010020 DOI: 10.1016/j.wasman.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/05/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Only a few works have contributed to quantifying the potential impacts of mismanaged plastics at the end-of-life stage. The MarILCA working group has developed characterization factors (CFs) to include the aquatic compartment, however, the terrestrial compartment remains a methodological gap. This work contributes to the quantification of the potential impacts of polypropylene (PP) and low-density polyethylene (LDPE) as well as their potential market substitutes plastic biopolymers (BPs) (PHA- and PLA-based) in the terrestrial compartment. Emission-based CFs have been developed to quantify their impacts through physical effects on biota related to microplastic ingestion, and ecotoxicological effects due to additives release. Fate factors (FFs) were derived from Plastic Footprint Network data and studies on accelerated photooxidation, the primary degradation pathway in the terrestrial compartment. Effect factors (EFs) were developed by the USEtox recommendations based on literature data on the physical and ecotoxicological impacts related to microplastics ingestion and additives release. An exposure factor (XF) of 1 was applied, as the CFs integrate potential impacts without distinguishing between short- and long-term effects. The study found that additives pose a greater environmental risk than microplastics ingestion, with CFs 3 to 4 orders of magnitude higher in the terrestrial compartment and even higher in the aquatic compartment. It is, therefore, essential to consider both the terrestrial and aquatic compartments to understand the impact of plastic pollution comprehensively. Finally, the study also found that the CFs of BPs are close to petrochemical plastics, underling the importance of proper waste management for the environmental performance of BPs.
Collapse
Affiliation(s)
- Brais Vázquez-Vázquez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| | - Massimo Lazzari
- CIQUS, Department of Physical Chemistry, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| | - Almudena Hospido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2025; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
5
|
Zhao J, Feng J, Du Y, Yan Z, Li X, Qin J, Su M, Yang M. Alkalinity control in sludge propels the conversion of concrete slurry waste into micro- and nano-sized biogenic CaCO 3. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1070-1081. [PMID: 39141052 DOI: 10.2166/wst.2024.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
The utilization of Bacillus sp. for the production of bio-CaCO3 in concrete crack repair and strength enhancement has attracted considerable attention. However, microbial-induced calcium carbonate precipitation (MICP) has yet to be explored as a precedent with activated sludge. Here calcium sourced from concrete slurry waste (CSW) and carbon from sludge microbial β-oxidation under alkaline were used to generate micro/nano CaCO3. The results indicate that the main crystalline form of the generated precipitated particles is calcite, with a particle size ranging from 0.7 to 10 μm. Minimal heavy metals were found in the supernatant following settling. And at the optimum pH of 8.5-9, carbon capture reached 743 mg L-1, and CaCO3 production reached 1,191 mg L-1, and dominant phylum were Proteobacteria and Bacteroidota, with Thauera being a prevalent genus adept in β-oxidation. Mass balance analysis showed that alkali promotes microbial β-oxidation of organisms to produce CO2 and facilitate storage. Thus, the alkaline regulation of metabolism between microbe and CSW provides a novel way of sludge to initiate MICP.
Collapse
Affiliation(s)
- Jinbo Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710054, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiacheng Feng
- School of Civil Engineering, Chang'an University, Xi'an 710054, China
| | - Yifan Du
- School of Civil Engineering, Chang'an University, Xi'an 710054, China
| | - Zhiyang Yan
- School of Civil Engineering, Chang'an University, Xi'an 710054, China
| | - Xiaoguang Li
- School of Civil Engineering, Chang'an University, Xi'an 710054, China
| | - Jinyi Qin
- School of Civil Engineering, Chang'an University, Xi'an 710054, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Ming Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wongsirichot P, Barroso-Ingham B, Hamilton A, Parroquin Gonzalez M, Romero Jimenez R, Hoeven R, Winterburn J. Food wastes for bioproduct production and potential strategies for high feedstock variability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:1-9. [PMID: 38781721 DOI: 10.1016/j.wasman.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Unavoidable food wastes could be an important feedstock for industrial biotechnology, while their valorization could provide added value for the food processor. However, despite their abundance and low costs, the heterogeneous/mixed nature of these food wastes produced by food processors and consumers leads to a high degree of variability in carbon and nitrogen content, as well as specific substrates, in food waste hydrolysate. This has limited their use for bioproduct synthesis. These wastes are often instead used in anaerobic digestion and mixed microbial culture, creating a significant knowledge gap in their use for higher value biochemical production via pure and single microbial culture. To directly investigate this knowledge gap, various waste streams produced by a single food processor were enzymatically hydrolyzed and characterized, and the degree of variability with regard to substrates, carbon, and nitrogen was quantified. The impact of hydrolysate variability on the viability and performance of polyhydroxyalkanoates biopolymers production using bacteria (Cupriavidus necator) and archaea (Haloferax mediterranei) as well as sophorolipids biosurfactants production with the yeast (Starmerella bombicola) was then elucidated at laboratory-scale. After which, strategies implemented during this experimental proof-of-concept study, and beyond, for improved industrial-scale valorization which addresses the high variability of food waste hydrolysate were discussed in-depth, including media standardization and high non-selective microbial organisms growth-associated product synthesis. The insights provided would be beneficial for future endeavors aiming to utilize food wastes as feedstocks for industrial biotechnology.
Collapse
Affiliation(s)
- Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Benjamin Barroso-Ingham
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alexander Hamilton
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mariana Parroquin Gonzalez
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Roger Romero Jimenez
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Robin Hoeven
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - James Winterburn
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Jantharadej K, Jaroensawat J, Matanachai K, Limpiyakorn T, Tobino T, Thayanukul P, Suwannasilp BB. Bioaugmentation of Thauera mechernichensis TL1 for enhanced polyhydroxyalkanoate production in mixed microbial consortia for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170240. [PMID: 38278252 DOI: 10.1016/j.scitotenv.2024.170240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Polyhydroxyalkanoate (PHA) is a fully biodegradable bioplastic. To foster a circular economy, the integration of PHA production into wastewater treatment facilities can be accomplished using mixed microbial consortia. The effectiveness of this approach relies greatly on the enrichment of PHA-accumulating microorganisms. Hence, our study focused on bioaugmenting Thauera mechernichensis TL1 into mixed microbial consortia with the aim of enriching PHA-accumulating microorganisms and enhancing PHA production. Three sequencing batch reactors-SBRctrl, SBR2.5%, and SBR25%-were operated under feast/famine conditions. SBR2.5% and SBR25% were bioaugmented with T. mechernichensis TL1 at 2.5%w/w of mixed liquor volatile suspended solids (MLVSS) and 25%w/w MLVSS, respectively, while SBRctrl was not bioaugmented. SBR2.5% and SBR25% achieved maximum PHA accumulation capacities of 56.3 %gPHA/g mixed liquor suspended solids (MLSS) and 50.2 %gPHA/gMLSS, respectively, which were higher than the 25.4 %gPHA/gMLSS achieved by SBRctrl. The results of quantitative polymerase chain reaction targeting the 16S rRNA gene specific to T. mechernichensis showed higher abundances of T. mechernichensis in SBR2.5% and SBR25% compared with SBRctrl in the 3rd, 17th, and 31st cycles. Fluorescence in situ hybridization, together with fluorescent staining of PHA with Nile blue A, confirmed PHA accumulation in Thauera spp. The study demonstrated that bioaugmentation of T. mechernichensis TL1 at 2.5%w/w MLVSS is an effective strategy to enhance PHA accumulation and facilitate the enrichment of PHA-accumulating microorganisms in mixed microbial consortia. The findings could contribute to the advancement of PHA production from wastewater, enabling the transformation of wastewater treatment plants into water and resource recovery facilities.
Collapse
Affiliation(s)
- Krittayapong Jantharadej
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jarataroon Jaroensawat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kanin Matanachai
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tomohiro Tobino
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Gao Y, Shen J, Yinzhang H, Yang L. Performance and microbial response to nitrate nitrogen removal from simulated groundwater by electrode biofilm reactor with Ti/CNT/Cu5-Pd5 catalytic cathode. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10974. [PMID: 38214427 DOI: 10.1002/wer.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
To enhance the removal of nitrate nitrogen (NO3 - -N) in groundwater with a low C/N ratio, electrocatalytic reduction of NO3 - -N has received extensive attention since its electrons can be directly produced in situ while simultaneously providing a clean electronic donor of hydrogen for denitrifying bacteria. In this study, Ti/CNT/CuPd bimetallic catalytic electrodes with different copper-palladium (CuPd) ratios were prepared by electrodeposition onto carbon nanotube (CNT) using titanium (Ti) plates. The results showed that the NO3 - -N conversion rate by Ti/CNT/Cu5-Pd5 electrode was the highest (53.60%) compared with other CuPd electrode ratios because of the combined role of the copper's high NO3 - -N catalytic activity and the palladium's high N2 selectivity. A new type of electrode biofilm reactor (EBR) with Ti/CNT/Cu5-Pd5 cathode, biochar substrate was constructed to explore the removal ability of NO3 - -N in simulated low C/N groundwater. When the influent NO3 - -N concentration was 30 mg/L, under the condition of a 30 mA electronic current and hydraulic retention time (HRT) of 12 h, the removal rate of NO3 - -N could reach as high as 78.1 ± 1.2%, and the N2 conversion rate was 99.7%. The horizontal distribution of microbial communities in EBR showed that the denitrification capacity was significantly improved through the electrochemical catalytic reduction of the Ti/CNT/Cu5-Pd5 cathode and the supply of the hydrogen electron donor to autotrophic denitrogenerating microbes such as Anaerobacillus, Thauera, and Hydrophaga. This study provides a new bimetallic catalytic cathode to enhance the removal of NO3 - -N in groundwater with a low C/N ratio. PRACTITIONER POINTS: The Cu5Pd5/CNTs/Ti electrode is beneficial to the adsorption and reduction of NO3 - -N to N2 . The production of hydrogen electron donors by cathode promoted nitrogen degradation. Activated electrodes together with denitrifying microorganisms contributed to the improved N removal rate.
Collapse
Affiliation(s)
- Yan Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, P. R. China
| | - Jianing Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Hongyu Yinzhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|