1
|
Pan B, Tian H, Liang QF, Huang HJ, Huang YT, Liu BL, Li YW, Xiang L, Zhao HM, Cai QY, Feng NX, Mo CH. Microbial augmented aerobic composting for effective phthalates degradation in activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124630. [PMID: 39986162 DOI: 10.1016/j.jenvman.2025.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Phthalate esters (PAEs) accumulated in activated sludge posed serious threats to agroecosystems and environment. Traditional aerobic (AE) and anaerobic (AN) composting were limited in achieving sustained PAEs degradation due to the single structure of microbial community. Here, the effectiveness and microbiological mechanisms of bacterial-augmented aerobic composting (AEB) in reducing activated sludge PAEs were investigated, with comparison of anaerobic composting (ANB). Results showed that AEB treatments significantly enhanced PAEs degradation efficiency through batch degradation experiments and microbial community analysis. At initial PAEs contamination levels of 50 mg/kg and 100 mg/kg, di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) removal rates increased by 2.11-3.93-fold and 2.18-3.36-fold, respectively. Notably, AEB treatment reshaped bacterial community structure, forming communities dominated by efficient PAEs-degrading bacteria. Network analysis revealed a more complex microbial interaction networks under AE treatment, with the numbers of node and connectivity being 1.5 and 1.8 times than that of AN treatment. Functional gene prediction indicated increased abundances of PAEs degradation-related functional groups. Environmental factor analysis demonstrated optimized conditions through pH control, oxygen supply, and active carbon-nitrogen metabolism. These findings provided important supports for safe activated sludge disposal and resource utilization.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| | - Hong Tian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Qi-Feng Liang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Ming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Zhu L, Liu L, Tan C, Li C, Le B, Yao X, Hu B. Sustainable decentralized food waste composting using a pulse alternating ventilation pilot-scale device: Case study based on LCA and LCC analysis. BIORESOURCE TECHNOLOGY 2025; 419:132078. [PMID: 39814154 DOI: 10.1016/j.biortech.2025.132078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Currently few efficient decentralized composting reactors have been developed, and there is also little exploration into their comprehensive environmental impact and carbon emissions. This study developed a continuous pulse alternating ventilation composting pilot device, SC-PAVCR. Results demonstrated that SC-PAVCR effectively maintained the thermophilic phase during the 120-day operation period. The organic matter degradation degree reached 44.05 %, and the humic acid content increased to 91.21 g·kg-1, accounting for 0.53 of the total organic carbon. Life cycle assessment analysis with windrow composting and machine composting revealed that SC-PAVCR reduced the normalized comprehensive environmental impact by 49 % and 25 %, respectively. The carbon emission intensity of SC-PAVCR was 44.3 kg CO2 eq per tonne of food waste, representing a reduction of 26 % and 48 % compared to the other two technologies. The economic cost of $1.91-3.98/FU was reduced. These findings provide technical guidance for the development of low-carbon food waste composting technologies.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunxu Tan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caokun Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Le
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
3
|
Li F, Li G, Lougou BG, Zhou Q, Jiang B, Shuai Y. Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:364-388. [PMID: 39236471 DOI: 10.1016/j.wasman.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.
Collapse
Affiliation(s)
- Fanghua Li
- National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Gaotingyue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bachirou Guene Lougou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiaoqiao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Boshu Jiang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Mohsin AKM, Gerschberger M, Plasch M, Ahmed SF, Rahman A, Rashed M. Examining the synergy of green supply chain practices, circular economy, and economic growth in mitigating carbon emissions: Evidence from EU countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123109. [PMID: 39486294 DOI: 10.1016/j.jenvman.2024.123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Integrating green supply chain strategies and circular economy (CE) practices holds substantial potential for promoting environmental sustainability and reducing CO2 emissions. This study investigates the synergy between green supply chain practices, circular economy, and economic growth (RGDP) impacts on carbon emissions in 13 selected European Union (EU) countries, using a comprehensive panel dataset from 2000 to 2022. We employ both linear and nonlinear panel ARDL models, along with causality tests, to examine how CO2 emissions respond to changes in green supply chain management (GSCM), real GDP (RGDP), and various recycling practices, including bio-waste, municipal waste, and packaging waste. Our findings reveal that GSCM practices significantly reduce carbon emissions in the long run, while economic growth (RGDP) and municipal waste generation correlate positively with increased CO2 emissions. Interestingly, the nonlinear ARDL model highlights that only recycling packaging waste (RWP) exhibits a positive long-run effect on reducing emissions. Additionally, the method of moments quantile regression (MMQR) analysis indicates that the impact of GSCM is more pronounced at higher quantiles of CO2 emissions, whereas the effect of RGDP on emissions remains inconsistent. These results underscore the crucial need to adopt and enhance green supply chain practices within a circular economy framework to achieve substantial carbon emission reductions, holding significant implications for carbon emissions policies in the selected EU countries.
Collapse
Affiliation(s)
- A K M Mohsin
- Logistikum, University of Applied Sciences Upper Austria, Steyr, Austria; Supply Chain Intelligence Institute Austria, Vienna, Austria.
| | - Markus Gerschberger
- Logistikum, University of Applied Sciences Upper Austria, Steyr, Austria; Supply Chain Intelligence Institute Austria, Vienna, Austria
| | - Michael Plasch
- Logistikum, University of Applied Sciences Upper Austria, Steyr, Austria
| | - Sayed Farrukh Ahmed
- Faculty of Business & Entrepreneurship, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| | - Arifur Rahman
- Faculty of Business & Entrepreneurship, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| | - Md Rashed
- College of Business Administration, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| |
Collapse
|
5
|
Kader S, Gratchev I, Michael RN. Recycled waste substrates: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176029. [PMID: 39244062 DOI: 10.1016/j.scitotenv.2024.176029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The growing interest in utilizing recycled waste substrates (RWS) in ecosystem services and environmental remediation aligns with the "waste to wealth" concept and the Sustainable Development Goals (SDGs). Despite the promising potential of RWS, research gaps remain due to a lack of comprehensive reviews on their production and applications. This systematic review attempts to synthesize and critically assess the scientific footprint of RWS through robust methodology and thorough investigation. Characterization of scientific literature, network analysis, and systematic review were conducted on articles indexed in the Web of Science and Scopus databases. Quantitative and qualitative analyses were performed on 140 articles selected by the rigorous article screening process executed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. The findings map the scientific literature and research themes in RWS. Around 66 % of studies in RWS used a multiple research approach, primarily experiments with case studies. Key research topics identified include (A) Technical domains - types of wastes and recycling techniques in RWS production and parameters influencing the substrate quality; (B) Application domains: environmental remediation of soil and agriculture and horticulture. The use of RWS in urban green infrastructure, particularly for green roofs and vegetative walls, and the potential for LCA studies on RWS production and applications emerge as promising areas for future research. This systematic review also presents a conceptual framework model (CFM) on RWS research, encapsulating the state-of-the-art themes, risks, limitations and constraints, and future research avenues.
Collapse
Affiliation(s)
- Shuraik Kader
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Ivan Gratchev
- School of Engineering and Built Environment, Griffith University, Parklands Drive, Gold Coast, Queensland 4222, Australia.
| | - Ruby N Michael
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| |
Collapse
|
6
|
Yusoff MA, Mohammadi P, Ahmad F, Sanusi NA, Hosseinzadeh-Bandbafha H, Vatanparast H, Aghbashlo M, Tabatabaei M. Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175810. [PMID: 39197788 DOI: 10.1016/j.scitotenv.2024.175810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.
Collapse
Affiliation(s)
- Mohd Azman Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Pouya Mohammadi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Azura Sanusi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Homa Hosseinzadeh-Bandbafha
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mortaza Aghbashlo
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
7
|
Zhou H, Zhang R, Wang L, Luo Y. Comprehensive Assessment and Optimization of a Middle-Arch Dual-Channel Municipal Solid Waste Incinerator Using Numerical Simulation Methods. ACS OMEGA 2024; 9:42010-42026. [PMID: 39398160 PMCID: PMC11465502 DOI: 10.1021/acsomega.4c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
The present study focuses on a middle-arch dual-channel municipal solid waste (MSW) incinerator facing issues of high NO x emission and overheating. To address these problems and optimize the incinerator, an advanced numerical simulation method was employed to comprehensively assess its bed combustion, freeboard combustion, and NO x emission characteristics. A multiphase fuel bed model considering large-particle characteristics of MSW was developed, coupled with a three-dimensional (3D) model for combustion in freeboard. The analysis revealed that the observed issues stem from multiple factors, including primary-to-secondary air ratio, flame propagation in bed, release of volatiles from bed, and distribution and mixing of components in freeboard. Reducing the proportion of primary air and correspondingly increasing secondary air effectively alleviated the localized overheating in the furnace and reduced NO x emission. Further adjustments to the distribution of primary air in three stages delaying air supply toward the burnout stage, together with the decrease in the grate movement speed, can better control the amount and speciation of N released from the bed. Implementing a counterflow mixing strategy with NH3 in the front channel and NO in the rear channel can greatly reduce the original NO x emission concentration to 95.94 mg/(N·m3), as predicted by a numerical simulation. Subsequent practical adjustments to an actual incinerator led to notable improvements, clearly optimizing the localized high-temperature issues at various locations, especially the front channel suffering severe slagging problems, with the temperature reduced from 1118 to 957 °C. Meanwhile, NO x emission concentration decreased from 200 mg/(N·m3) to around 50 mg/(N·m3), with no negative effect on the boiler load.
Collapse
Affiliation(s)
- Hongquan Zhou
- Thermal
Environmental Engineering Institute, Tongji
University, Yangpu District, Shanghai 200092, China
- Shanghai
Environmental Sanitation Engineering Design Institute Co., Ltd, Xuhui District, Shanghai 200232, China
| | - Ruizhi Zhang
- Institute
of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
| | - Linzheng Wang
- Institute
of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
| | - Yonghao Luo
- Institute
of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
| |
Collapse
|
8
|
Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@GI): Feasibilities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172883. [PMID: 38697528 DOI: 10.1016/j.scitotenv.2024.172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Addressing carbon (C) and nitrogen (N) losses through composting has emerged as a critical environmental challenge recently, and how to mitigate these losses has been a hot topic across the world. As the emissions of carbonaceous and nitrogenous gases were closely correlated with the composting process, the feasibility of composting duration shortening on C and N loss needs to be explored. Therefore, the goal of this paper is to find evidence-based approaches to reduce composting duration, utilizing the seed germination index as a metric (SCD@GI), for assessing its efficiency on C and N loss reductions as well as compost quality. Our findings reveal that the terminal seed germination index (GI) frequently surpassed the necessary benchmarks, with a significant portion of trials achieving the necessary GI within 60 % of the standard duration. Notably, an SCD@GI of 80 % resulted in a reduction of CO2 and NH3 by 21.4 % and 21.9 %, respectively, surpassing the effectiveness of the majority of current mitigation strategies. Furthermore, compost quality, maturity specifically, remained substantially unaffected at a GI of 80 %, with the composting process maintaining adequate thermophilic conditions to ensure hygienic quality and maturity. This study also highlighted the need for further studies, including the establishment of uniform GI testing standards and comprehensive life cycle analyses for integrated composting and land application practices. The insights gained from this study would offer new avenues for enhancing C and N retention during composting, contributing to the advancement of high-quality compost production within the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Lan Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanye Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| |
Collapse
|
9
|
Zhang Y, Wang Y, Zhang J, Liu J, Ruan J, Jin X, Liu D, Lu Z, Xu Z. Research on waste gas treatment technology and comprehensive environmental performance evaluation for collaborative management of pollution and carbon in China's pharmaceutical industry based on life cycle assessment (LCA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170555. [PMID: 38336067 DOI: 10.1016/j.scitotenv.2024.170555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
China is the largest industrial and pharmaceutical country in the world. The pharmaceutical industry, being a highly polluting sector, is the primary target of environmental regulation in the industry. The rapid development of pharmaceutical industry has posed a severe challenge to the environmental protection strategy of "carbon reduction and carbon neutrality" and the goal of "synergizing the reduction of pollution and carbon emissions" in China's "14th Five-Year Plan". Therefore, this paper starts from the whole industry, takes the life cycle of the whole production process of the pharmaceutical industry as the guidance, and selects a pharmaceutical company in Tianjin as the research object. Then using Life Cycle Assessment (LCA) to Characterization, Standardization, and Weighting the environmental impact of the waste gas treatment process before and after improvement based on waste gas emission characteristics from the pharmaceutical factory. LCA results show that GWP and AP are the most important environmental impact types, which account for >85 % of the total characterization value. I and II - Chemical Pharmaceutical Stage is the critical life cycle stage, accounting for over 80 % of the total characteristic values. This research proposes emission reduction countermeasures based on LCA results and simulates Emission reduction scenarios and economic evolution. If effectively implementing emission reduction countermeasures, reducing the environmental characterization value by 80 to 90 %, and generating economic benefit of 2.66 × 108 RMB/year. This research could guide improvement plans and emission reduction countermeasures of waste gas treatment in the pharmaceutical industry, which realizes collaborative management about efficient reduction of pollution and carbon and generates significant environmental, technological, economic, and social benefits.
Collapse
Affiliation(s)
- Yuwei Zhang
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; The Group of Nanjing University Academy of Environmental Planning & Design, Nanjing 210093, China
| | - Yibo Wang
- Chinese Research Academy of Environmental Sciences, State Environmental Protection Key Laboratory of Ecological Industry, Beijing 100000, China
| | - Jiwen Zhang
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; The Group of Nanjing University Academy of Environmental Planning & Design, Nanjing 210093, China
| | - Jingyang Liu
- Chinese Research Academy of Environmental Sciences, State Environmental Protection Key Laboratory of Ecological Industry, Beijing 100000, China
| | - Jiuli Ruan
- Chinese Research Academy of Environmental Sciences, State Environmental Protection Key Laboratory of Ecological Industry, Beijing 100000, China
| | - Xiaoxian Jin
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; The Group of Nanjing University Academy of Environmental Planning & Design, Nanjing 210093, China
| | - Dong Liu
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; The Group of Nanjing University Academy of Environmental Planning & Design, Nanjing 210093, China
| | - Zhaoyang Lu
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; The Group of Nanjing University Academy of Environmental Planning & Design, Nanjing 210093, China.
| | - Zunzhu Xu
- NJU Environmental Technologies of Nanjing University Jiangsu Co., LTD, Nanjing 210093, China; School of Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Taoumi H, Elouahbi K, Adnane I, Lahrech K. Sustainable crop production: Highlights on economic, environmental and social life cycle thinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170267. [PMID: 38253108 DOI: 10.1016/j.scitotenv.2024.170267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Seeking multi-dimensional inclusion is one of the most global concerns of the crop production sector worldwide. Socio-eco-effectiveness or socio-eco-efficiency optimization plays a crucial role in future strategy establishment. Life cycle is a widely used approach examining economic, environmental, and social impacts. Recently, life cycle thinking approaches have been increasingly utilized to bring to light useful perceptions of the crop production processes. This study aims to apply a systematic review and prescriptive analytics to critically investigate the life cycle thinking approaches application according to sustainability pyramid aspects, life cycle thinking unicity, goal and scope variability, functional units' causality, system boundary' diversity, involved aspect' concentration, indicators, impacts categories and influencing variables distribution, as well as to define a first datasheet model and directive axis to apply per aspect and family for socio-eco-effectiveness or socio-eco-efficiency evaluation. Over 295 peer-reviewed studies from 2019 to the middle of 2023, 52 reviews and articles gathered from Web of Science and Scopus meet the criteria to be analyzed. Our inspection revealed that related reviews are few, approximately 2 %. Moving from the traditional life cycle perspective to the sustainability pyramid approach, the indicators applied by researchers were classified per aspect and family belonging. A deductive analysis was carried out to narrow the impact categories, and the influencing factors to the population's main interests: four economic (input status, resources consumption, waste, and Costs of Life Cycle), eight environmental (Climate Change, Global Warming, Ozone, Acidification, Eutrophication, Photochemical Oxidation, Abiotic Depletion, and Toxicity), and three social families (Human Toxicity, employment, and Ionizing Radiation). The results combination highlights the construction need for a directive datasheet model to address the optimizing problem under the identified families and aspects constraints, as well as to envisage the units and methods worldwide standardization's necessity for spatial-temporal studies comparison in the present, the past, and the future.
Collapse
Affiliation(s)
- Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco.
| | - Karim Elouahbi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco.
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco.
| |
Collapse
|
11
|
Silva MEF, Saetta R, Raimondo R, Costa JM, Ferreira JV, Brás I. Forest waste composting-operational management, environmental impacts, and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32279-0. [PMID: 38372920 DOI: 10.1007/s11356-024-32279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
In Portugal, the number of fires and the size of burnt areas are rising dramatically every year, increasing with improper management of agroforestry wastes (AFRs). This work aims to study the composting of these wastes with minimal operational costs and understand the environmental impact and the compost application on burnt soil. Thus, a study of life cycle assessment (LCA) was carried out based on windrow composting processes, considering the avoided environmental impacts associated with the end-product quality and its application as an organic amendment. Three composting piles were made with AFRs from the Residual Biomass Collection Centre (RBCC) in Bodiosa (Portugal). Sewage sludges (SS) from an urban wastewater treatment plant were used as conditioning agent. One pile with AFRs (MC) and another with AFRs and SS (MCS) were managed according to good composting practices. Another pile with the AFRs was developed without management (NMC), thus with a minimal operational cost. Periodically, it was measured several physical and chemical parameters according to standard methodologies. Eleven environmental impacts of compost production, MC and MCS, were analyzed by a LCA tool, and their effect on the growth of Pinus pinea was evaluated, using peat as reference. Composting evolution was expected for both piles. Final composts, MC and MCS, were similar, complying with organic amendment quality parameters. Compost NMC, with no operational management, showed the highest germination index. Piles MC and MCS showed similar environmental impacts, contributing to a negative impact on global warming, acidification, and eutrophication. Greater growth was obtained with application of MCS, followed by MC, and finally, peat. Composting is a sustainable way to valorize AFRs wastes, producing compost that could restore burnt soils and promote plant growth and circular economy.
Collapse
Affiliation(s)
- Maria Elisabete Ferreira Silva
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal.
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), R. Dr. Roberto Frias S/N, 4200-465, Porto, Portugal.
| | - Raffaella Saetta
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - Roberta Raimondo
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - José Manuel Costa
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - José Vicente Ferreira
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - Isabel Brás
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| |
Collapse
|
12
|
Arfelli F, Cespi D, Ciacci L, Passarini F. Application of life cycle assessment to high quality-soil conditioner production from biowaste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:216-225. [PMID: 37924597 DOI: 10.1016/j.wasman.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
The recent large-scale urbanization and industrialization resulted in an impressive growth of solid waste generation worldwide. Organic fraction generally constitutes a large fraction of municipal solid waste and its peculiar chemical properties open to various valorization strategies. On this purpose, life cycle assessment is applied to an innovative industrial system that processes 18 kt/y of agricultural and livestock waste into a high-quality soil conditioner. The high-quality soil conditioner production system consists of a series of processes, including anaerobic digestion and vermicomposting, allowing the generation of a peat-like material with high carbon content, porosity, and water-holding capacity. The presence of a photovoltaic plant and a cogeneration plant, fed with the biogas produced in the anaerobic digestion, makes the system entirely self-sufficient from the national grid and generating a surplus of electricity of 1177MWh/y. The high-quality soil conditioner showed better environmental performances in 15 out of 18 impact categories when compared to alternative scenarios. In particular, the high-quality soil conditioner and the related biowaste management resulted in a carbon saving of around 397 kg CO2 eq/ton compared with a scenario involving the employment of peat in place of the high-quality soil conditioner and a traditional biowaste management, and 165 kg CO2 eq/ton compared with a scenario where cogeneration is replaced by biomethane upgrading. This study demonstrates the possibility of using organic waste as an environmentally sustainable and renewable source for energy and carbon to soil conditioning.
Collapse
Affiliation(s)
- Francesco Arfelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy.
| | - Luca Ciacci
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy
| |
Collapse
|