1
|
Uppalapati S, Paramasivam P, Kilari N, Chohan JS, Kanti PK, Vemanaboina H, Dabelo LH, Gupta R. Precision biochar yield forecasting employing random forest and XGBoost with Taylor diagram visualization. Sci Rep 2025; 15:7105. [PMID: 40016391 PMCID: PMC11868558 DOI: 10.1038/s41598-025-91450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Waste-to-energy conversion via pyrolysis has attracted increasing attention recently owing to its multiple uses. Among the products of this process, biochar stands out for its versatility, with its yield influenced by various factors. Extensive and labor-intensive experimental testing is sometimes necessary to properly grasp the output distribution from various feedstocks. Nonetheless, data-driven predictive models using large-scale historical experiment records can provide insightful analysis of projected yields from a variety of biomass materials, hence overcoming the challenges of empirical modeling. As such, five modern approaches available in modern machine learning are employed in this study to develop the biochar yield prediction models. The Lasso regression, Tweedie regression, random forest, XGBoost, and Gradient boosting regression were employed. Out of these five XGBoost was superior with a training mean squared error (MSE) of 1.17 and a test MSE of 2.94. The XGBoost-based biochar yield model shows excellent performance with a strong predictive accuracy of the R2 values as 0.9739 (training) and 0.8875 (test). The mean absolute percentage error value was only 2.14% in the training phase and 3.8% in the testing phase. Precision prognostic technologies have broad effects on sectors including biomass logistics, conversion technologies, and effective biomass utilization as renewable energy. Leveraging SHAP based on cooperative game theory, the study shows that while ash and moisture lower biochar yield, FPT, nitrogen, and carbon content significantly boost it. Small variables like heating rate and volatile matter have a secondary impact on production efficiency.
Collapse
Affiliation(s)
- Sudhakar Uppalapati
- Department of Mechanical Engineering, Marri Laxman Reddy Institute of Technology and Management, Hyderabad, 500043, India
| | - Prabhu Paramasivam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India.
| | - Naveen Kilari
- VEMU Institute of Technology, Chittoor, Andra Pradesh, 517112, India
| | - Jasgurpreet Singh Chohan
- School of Mechanical Engineering, Rayat Bahra University, Mohali, 140104, India
- Faculty of Engineering, Sohar University, 7119, Sohar, Oman
| | - Praveen Kumar Kanti
- University Center for Research and Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India
| | | | - Leliso Hobicho Dabelo
- Department of Mechanical Engineering, Mattu University, P.O. Box 318, Mettu, Ethiopia.
| | - Rupesh Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Wang B, Yao Z, Kumar S, Salama Abdelhady Mohamed M, Mohamed Abdel Sattar A, Ortuño N, Wang X, Qi W. Pyrolysis conversion of multi-layer packaging waste under a CO2 atmosphere: Thermo-kinetic study, evolved products analysis and artificial neural networks modeling. Chem Eng Sci 2024; 300:120584. [DOI: 10.1016/j.ces.2024.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Premchand P, Demichelis F, Galletti C, Chiaramonti D, Bensaid S, Antunes E, Fino D. Enhancing biochar production: A technical analysis of the combined influence of chemical activation (KOH and NaOH) and pyrolysis atmospheres (N 2/CO 2) on yields and properties of rice husk-derived biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123034. [PMID: 39442397 DOI: 10.1016/j.jenvman.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The production of biochar from biomass has received considerable interest due to its potential in environmental applications; however, optimizing biochar properties remains a major challenge. The objective of the present study was to investigate the synergistic effects of pyrolysis atmospheres (N2 and CO2) and chemical activation (pre- and post-pyrolysis) with NaOH and KOH on the properties of biochar useful for its environmental applications. In this study rice husk and biochar were impregnated with KOH and NaOH before and after pyrolysis, which was carried out at 600 °C under N₂ and CO₂ atmosphere. The pyrolytic yields (biochar, liquid and gas) and detailed characterization of biochar were performed. The results showed that pre-activation with both alkalis under a CO2 atmosphere slightly decreased the biochar yield and carbon contents while increasing oxygen in biochars compared to N2 atmosphere. Alkali pre-activation in the CO2 atmosphere considerably increased the specific surface area and pore volume of biochars compared to the N2 atmosphere, with KOH being more effective than NaOH. The maximum specific surface area (SSA) and pore volume (PV) of biochar obtained were 178.4 m2/g and 0.60 cm3/g for KOH activated biochar under CO2, which were 3.2 times and 30 times higher than the untreated biochar. The post-activation of biochars with both alkalis resulted in moderate improvements in textural properties. Overall, chemical activation under CO2 pyrolysis facilitated a higher level of chemical activation reactions leading to increased formation of oxygen functional groups and contributed to enhanced SSA and PV of the biochar useful for adsorption.
Collapse
Affiliation(s)
- Premchand Premchand
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100, Pavia, PV, Italy
| | - Francesca Demichelis
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy.
| | - Camilla Galletti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - David Chiaramonti
- Department of Energy, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy.
| |
Collapse
|
4
|
Ibitoye SE, Loha C, Mahamood RM, Jen TC, Alam M, Sarkar I, Das P, Akinlabi ET. An overview of biochar production techniques and application in iron and steel industries. BIORESOUR BIOPROCESS 2024; 11:65. [PMID: 38960979 PMCID: PMC11222365 DOI: 10.1186/s40643-024-00779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Integrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass. This review examines biochar production methods and their potential applications across various aspects of the iron and steel industries (ISI). The technical, economic, and sustainable implications of integrating biochar into the ISI were explored. Slow pyrolysis and hydrothermal carbonization are the most efficient methods for higher biochar yield (25-90%). Biochar has several advantages- higher heating value (30-32 MJ/kg), more porosity (58.22%), and significantly larger surface area (113 m2/g) compared to coal and coke. However, the presence of biochar often reduces fluidity in a coal-biochar mixture. The findings highlighted that biochar production and implementation in ISI often come with higher costs, primarily due to the higher expense of substitute fuels compared to traditional fossil fuels. The economic viability and societal desirability of biochar are highly uncertain and vary significantly based on factors such as location, feedstock type, production scale, and biochar pricing, among others. Furthermore, biomass and biochar supply chain is another important factor which determines its large scale implementation. Despite these challenges, there are opportunities to reduce emissions from BF-BOF operations by utilizing biochar technologies. Overall, the present study explored integrating diverse biochar production methods into the ISI aiming to contribute to the ongoing research on sustainable manufacturing practices, underscoring their significance in shaping a more environmentally conscious future.
Collapse
Affiliation(s)
- Segun E Ibitoye
- Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
- School of Engineering, Woxsen University, Kamkole Village, Sadasivpet, Sangareddy District, Hyderabad, Telangana, 502345, India.
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India.
| | - Chanchal Loha
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Rasheedat M Mahamood
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
| | - Meraj Alam
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Ishita Sarkar
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Partha Das
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Esther T Akinlabi
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
5
|
He D, Luo Y, Zhu B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171259. [PMID: 38417524 DOI: 10.1016/j.scitotenv.2024.171259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The use of biochar for soil improvement and emission reduction has been widely recognized for its excellent performance. However, the choice of feedstock and pyrolysis temperature for biochar production significantly affects its surface parameters and interactions with soil substances. In this study, we retrieved 465 peer-reviewed papers on the application of biochar in reducing greenhouse gas emissions and nutrient losses in soil and analyzed the changes in biochar physicochemical parameters from different feedstock and pyrolytic temperatures. Molecular simulation computing technology was also used to explore the impacts of these changes on the interaction between biochar and soil substances. The statistical results from the peer-reviewed papers indicated that biochar derived from wood-based feedstock exhibits superior physical characteristics, such as increased porosity and specific surface area. Conversely, biochar derived from straw-based feedstock was found to contain excellent element content, such as O, N, and H, and biochar derived from straw and produced at low pyrolysis temperatures contains a significant number of functional groups that enhance the charge transfer potential and adsorption stability by increasing surface charge density, charge distribution and bonding orbitals. However, it should be noted that this enhancement may also activate certain recalcitrant C compounds and promote biochar decomposition. Taken together, these results have significant implications for biochar practitioners when selecting suitable feedstock and pyrolysis temperatures based on agricultural needs and increasing their understanding of the interaction mechanism between biochar and soil substances.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Luo
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Cui X, Yang Y, Wang J, Cheng Z, Wang X, Khan KY, Xu S, Yan B, Chen G. Pyrolysis of exhausted biochar sorbent: Fates of cadmium and generation of products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170712. [PMID: 38325461 DOI: 10.1016/j.scitotenv.2024.170712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Biochar is a promising sorbent for Cd removal from water, while the disposal of the exhausted Cd-enriched biochar remains a challenge. In this study, pyrolysis was employed to treat the exhausted biochar under N2 and CO2 atmospheres at 600-900 °C, and the fate of Cd during pyrolysis and characteristics of high-valued products were determined. The results indicated that higher temperature and CO2 atmosphere favored the volatilization of Cd. Based on the toxicity characteristic leaching procedure (TCLP) results, the pyrolysis treatment under both atmospheres enhanced the stability of Cd, and the leached Cd concentration of regenerated biochar obtained at high temperatures (>800 °C) was lower than 1 mg/L. Compared with the pristine biochar, the regenerated biochar demonstrated higher carbon content and pH, whereas the contents of oxygen and hydrogen declined, and exhibited promising sorption properties (35.79 mg/g). The atmosphere played an important role in modifying biochar properties and syngas composition. The N2 atmosphere facilitated CH4 production, whereas the CO2 atmosphere increased the proportion of CO. These results implied that pyrolysis can be a valuable and environmental-friendly strategy for the treatment and reuse of exhausted biochar sorbent.
Collapse
Affiliation(s)
- Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Yuxin Yang
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Jiangtao Wang
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China.
| | - Xutong Wang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China.
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiwei Xu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
7
|
Awasthi MK, Rajendran K, Vigneswaran V, Kumar V, Dregulo AM, Singh V, Kumar D, Sindhu R, Zhang Z. Exploration of upgrading of biomass and its paradigmatic synthesis: Future scope for biogas exertion. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 38:101450. [DOI: 10.1016/j.scp.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|