1
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Chaúque BJM, Rott MB. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. CHEMOSPHERE 2021; 281:130754. [PMID: 34029967 DOI: 10.1016/j.chemosphere.2021.130754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Gastrointestinal waterborne diseases, continue to stand out among the most lethal diseases in developing countries, because of consuming contaminated water taken from unsafe sources. Advances made in recent decades in methods of solar water disinfection (SODIS) have shown that SODIS is an effective and inexpensive method of providing drinking water, capable of substantially reducing the prevalence and mortality of waterborne diseases. The increased impact of SODIS in communities lacking drinking water services depends on a successful upgrade from conventional SODIS (based on PET bottle reactors) in high flow continuous flow systems for solar water disinfection (CFSSWD). This review aimed to identify the main limitations of conventional SODIS that hinder its application as a large-scale drinking water supply strategy, and to propose ways to overcome these limitations (without making it economically inaccessible) based on the current frontier of advances technological. It was found that the successful development of the CFSSWD depends on overcoming the current limitations of conventional SODIS and the development of systems whose configurations allow combining the properties of solar pasteurization (SOPAS) and SODIS. Different improvements need to be made to the main components of the CFSSWD, such as increasing the performance of solar radiation collectors, photo and thermal reactors and heat exchangers. The integration of disinfection technologies based on photocatalytic and photothermal nanomaterials also needs to be achieved. The performance evaluation of the CFSSWD should be made considering resistant microorganisms, such as the environmental resistance structures of bacteria or protozoa (spores or (oo)cysts) as targets of disinfection approaches.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil; Department of Science, Technology, Engineering and Mathematics, Universidade Rovuma, Niassa Branch, Mozambique.
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil.
| |
Collapse
|
3
|
Insights into Solar Disinfection Enhancements for Drinking Water Treatment Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su131910570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poor access to drinking water, sanitation, and hygiene has always been a major concern and a main challenge facing humanity even in the current century. A third of the global population lacks access to microbiologically safe drinking water, especially in rural and poor areas that lack proper treatment facilities. Solar water disinfection (SODIS) is widely proven by the World Health Organization as an accepted method for inactivating waterborne pathogens. A significant number of studies have recently been conducted regarding its effectiveness and how to overcome its limitations, by using water pretreatment steps either by physical, chemical, and biological factors or the integration of photocatalysis in SODIS processes. This review covers the role of solar disinfection in water treatment applications, going through different water treatment approaches including physical, chemical, and biological, and discusses the inactivation mechanisms of water pathogens including bacteria, viruses, and even protozoa and fungi. The review also addresses the latest advances in different pre-treatment modifications to enhance the treatment performance of the SODIS process in addition to the main limitations and challenges.
Collapse
|
4
|
García-Gil Á, García-Muñoz RA, McGuigan KG, Marugán J. Solar Water Disinfection to Produce Safe Drinking Water: A Review of Parameters, Enhancements, and Modelling Approaches to Make SODIS Faster and Safer. Molecules 2021; 26:molecules26113431. [PMID: 34198857 PMCID: PMC8201346 DOI: 10.3390/molecules26113431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
Solar water disinfection (SODIS) is one the cheapest and most suitable treatments to produce safe drinking water at the household level in resource-poor settings. This review introduces the main parameters that influence the SODIS process and how new enhancements and modelling approaches can overcome some of the current drawbacks that limit its widespread adoption. Increasing the container volume can decrease the recontamination risk caused by handling several 2 L bottles. Using container materials other than polyethylene terephthalate (PET) significantly increases the efficiency of inactivation of viruses and protozoa. In addition, an overestimation of the solar exposure time is usually recommended since the process success is often influenced by many factors beyond the control of the SODIS-user. The development of accurate kinetic models is crucial for ensuring the production of safe drinking water. This work attempts to review the relevant knowledge about the impact of the SODIS variables and the techniques used to develop kinetic models described in the literature. In addition to the type and concentration of pathogens in the untreated water, an ideal kinetic model should consider all critical factors affecting the efficiency of the process, such as intensity, spectral distribution of the solar radiation, container-wall transmission spectra, ageing of the SODIS reactor material, and chemical composition of the water, since the substances in the water can play a critical role as radiation attenuators and/or sensitisers triggering the inactivation process.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
| | - Rafael A. García-Muñoz
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
| | - Kevin G. McGuigan
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, DO2 YN77 Dublin, Ireland;
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
- Correspondence:
| |
Collapse
|
5
|
Cowie BE, Porley V, Robertson N. Solar Disinfection (SODIS) Provides a Much Underexploited Opportunity for Researchers in Photocatalytic Water Treatment (PWT). ACS Catal 2020. [DOI: 10.1021/acscatal.0c03325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Bradley E. Cowie
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, U.K
| | - Victoria Porley
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, U.K
| | - Neil Robertson
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, U.K
| |
Collapse
|
6
|
Beattie A, Dillon H, Poor C, Kenton R. Solar water disinfection with parabolic and flat reflectors. JOURNAL OF WATER AND HEALTH 2019; 17:921-929. [PMID: 31850899 DOI: 10.2166/wh.2019.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solar water disinfection (SODIS) is a process by which microbially contaminated water is disinfected by transmitting solar ultraviolet radiation to the water, rendering the bacteria inactive. The purpose of this project was to determine a residence time for disinfection in specific applications using a 3-log reduction in colony-forming units per milliliter (CFU/mL). The water was contained in quartz tubes and tested over both flat and parabolic reflectors. While UVA and UVB radiation are diffuse and independent of reflector style, water temperature is affected by solar concentration. The two reflector styles were studied to identify how insolation level and temperature affects the bacteria inactivation process. Escherichia coli, DH5α, was inoculated into sterile water and treated for 2, 4, and 8 h. The study had several conclusions, first that a 5-log reduction was achieved after 2 h, for all water temperature and insolation levels. The reflector style did not have a measurable effect on inactivation due to the short disinfection time, but the water temperature increased significantly with the parabolic reflectors. A thermal model of the two systems confirmed that the parabolic configuration resulted in higher energy input, making it the preferred configuration for disinfection with lower residence times.
Collapse
Affiliation(s)
- Audrey Beattie
- Department of Mechanical Engineering, University of Portland, Shiley School of Engineering, 5000 N Willamette Blvd, Portland, OR 97203, USA E-mail:
| | - Heather Dillon
- Department of Mechanical Engineering, University of Portland, Shiley School of Engineering, 5000 N Willamette Blvd, Portland, OR 97203, USA E-mail:
| | - Cara Poor
- Department of Civil Engineering, University of Portland, Shiley School of Engineering, 5000 N Willamette Blvd, Portland, OR 97203, USA
| | - Ryan Kenton
- Department of Biology, University of Portland, 5000 N Willamette Blvd, Portland, OR 97203, USA
| |
Collapse
|
7
|
Pichel N, Vivar M, Fuentes M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. CHEMOSPHERE 2019; 218:1014-1030. [PMID: 30609481 DOI: 10.1016/j.chemosphere.2018.11.205] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 05/17/2023]
Abstract
The lack of access to safe drinking water is one of the biggest challenges facing humanity in the 21st century. Despite the collective global effort that has been made, the drinking water sources of at least 2 billion people are faecally contaminated, resulting in more than half a million diarrhoeal deaths each year, with the majority occurring in developing countries. Technologies for the inactivation of pathogenic microorganisms in water are therefore of great significance for human health and well-being. However, conventional technologies to provide drinking water, although effective, present limitations that impede their global application. These treatment methods often have high energy and chemical demands, which limits their application for the prevention of waterborne diseases in the most vulnerable regions. These shortcomings have led to rapid research and development of advanced alternative technologies. One of these alternative methods is solar disinfection, which is recognised by the World Health Organization as one of the most appropriate methods for producing drinkable water in developing countries. This study reviews conventional technologies that are being applied at medium to large scales to purify water and emerging technologies currently in development. In addition, this paper describes the merits, demerits, and limitations of these technologies. Finally, the review focuses on solar disinfection, including a novel technology recently developed in this field.
Collapse
Affiliation(s)
- N Pichel
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain.
| | - M Vivar
- Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| | - M Fuentes
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain; Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| |
Collapse
|
8
|
Castro-Alférez M, Polo-López MI, Fernández-Ibáñez P. Intracellular mechanisms of solar water disinfection. Sci Rep 2016; 6:38145. [PMID: 27909341 PMCID: PMC5133603 DOI: 10.1038/srep38145] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 01/29/2023] Open
Abstract
Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.
Collapse
Affiliation(s)
- María Castro-Alférez
- Plataforma Solar de Almería – CIEMAT, P.O. Box 22, 04200 Tabernas (Almería), Spain
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería – CIEMAT, P.O. Box 22, 04200 Tabernas (Almería), Spain
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | | |
Collapse
|
9
|
Ngwenya N, Ncube EJ, Parsons J. Recent advances in drinking water disinfection: successes and challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 222:111-70. [PMID: 22990947 DOI: 10.1007/978-1-4614-4717-7_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality, it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.
Collapse
Affiliation(s)
- Nonhlanhla Ngwenya
- Scientific Services Division, Rand Water, Johannesburg, 1170 2000 South Africa.
| | | | | |
Collapse
|
10
|
McGuigan KG, Conroy RM, Mosler HJ, du Preez M, Ubomba-Jaswa E, Fernandez-Ibañez P. Solar water disinfection (SODIS): a review from bench-top to roof-top. JOURNAL OF HAZARDOUS MATERIALS 2012; 235-236:29-46. [PMID: 22906844 DOI: 10.1016/j.jhazmat.2012.07.053] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 05/12/2023]
Abstract
Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.
Collapse
|
11
|
Dunlop PSM, Ciavola M, Rizzo L, Byrne JA. Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags. CHEMOSPHERE 2011; 85:1160-1166. [PMID: 21982840 DOI: 10.1016/j.chemosphere.2011.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t(50)=9.0min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50NTU) using the SBSS bag within 180min simulated solar exposure. The addition of titanium dioxide (0.025gL(-1)) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions.
Collapse
Affiliation(s)
- P S M Dunlop
- Photocatalysis Research Group, Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, United Kingdom
| | | | | | | |
Collapse
|
12
|
Manjón F, Santana-Magaña M, García-Fresnadillo D, Orellana G. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors. Photochem Photobiol Sci 2010; 9:838-45. [DOI: 10.1039/c0pp00026d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ubomba-Jaswa E, Navntoft C, Polo-López MI, Fernandez-Ibáñez P, McGuigan KG. Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency. Photochem Photobiol Sci 2009; 8:587-95. [PMID: 19424529 DOI: 10.1039/b816593a] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of solar UV-A irradiance and solar UV-A dose on the inactivation of Escherichia coli K-12 using solar disinfection (SODIS) was studied. E. coli K-12 was seeded in natural well-water contained in borosilicate glass tubes and exposed to sunlight at different irradiances and doses of solar UV radiation. In addition, E. coli K-12 was also inoculated into poly(ethylene) terephthalate (PET) bottles and in a continuous flow system (10 L min(-1)) to determine the effect of an interrupted and uninterrupted solar dose on inactivation. Results showed that inactivation from approximately 10(6) CFU mL(-1) to below the detection level (4 CFU/mL) for E. coli K-12, is a function of the total uninterrupted dose delivered to the bacteria and that the minimum dose should be >108 kJ m(-2) for the conditions described (spectral range of 0.295-0.385 microm). For complete inactivation to below the limit of detection, this dose needs to be received regardless of the incident solar UV intensity and needs to be delivered in a continuous and uninterrupted manner. This is illustrated by a continuous flow system in which bacteria were not fully inactivated (residual viable concentration approximately 10(2) CFU/mL) even after 5 h of exposure to strong sunlight and a cumulative dose of >108 kJ m(-2). This has serious implications for attempts to scale-up solar disinfection through the use of re-circulatory continuous flow reactors.
Collapse
Affiliation(s)
- Eunice Ubomba-Jaswa
- Department of Physiology and Medical Physics, Royal College of Surgeon, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
14
|
Manjón F, García-Fresnadillo D, Orellana G. Water disinfection with Ru(ii) photosensitisers supported on ionic porous silicones. Photochem Photobiol Sci 2009; 8:926-32. [DOI: 10.1039/b902014d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 93:155-61. [DOI: 10.1016/j.jphotobiol.2008.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022]
|