1
|
Tian C, Dai R, Chen M, Wang X, Shi W, Ma J, Wang Z. Biofouling suppresses effluent toxicity in an electrochemical filtration system for remediation of sulfanilic acid-contaminated water. WATER RESEARCH 2022; 219:118545. [PMID: 35550968 DOI: 10.1016/j.watres.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical filtration system (EFS) has received broad interest due to its high efficiency for organic contaminants removal. However, the porous nature of electrodes and flow-through operation mode make it susceptible to potential fouling. In this work, we systematically investigated the impacts of biofouling on sulfanilic acid (SA) removal and effluent toxicity in an EFS. Results showed that the degradation efficiency of SA slightly deteriorated from 92.3% to 81.1% at 4.0 V due to the electrode fouling. Surprisingly, after the occurrence of fouling, the toxicity (in terms of luminescent bacteria inhibition) of the EFS effluent decreased from 72.3% to 40.2%, and cytotoxicity assay exhibited similar tendency. Scanning electron microscopy and confocal laser scanning microscopy analyses revealed that biofouling occurred on the porous cathode, and live microorganisms were the dominant contributors, which are expected to play an important role in toxicity suppression. The relative abundance of Flavobacterium genus, related to the degradation of p-nitrophenol (an aromatic intermediate product of SA), increased on the membrane cathode after fouling. The analysis of degradation pathway confirmed the synergetic effects of electrochemical oxidation and biodegradation in removal of SA and its intermediate products in a bio-fouled EFS, accounting for the decrease of the effluent toxicity. Results of our study, for the first time, highlight the critical role of biofouling in detoxication using EFS for the treatment of contaminated water.
Collapse
Affiliation(s)
- Chenxin Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Tongji Advanced Membrane Technology Center, Shanghai 200092, China.
| |
Collapse
|
2
|
Sampaio EFS, Rodrigues CSD, Lima VN, Madeira LM. Industrial wastewater treatment using a bubble photo-Fenton reactor with continuous gas supply. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6437-6449. [PMID: 32997243 DOI: 10.1007/s11356-020-10741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The present study assesses the treatability of a real industrial wastewater (WW) with a high organic load (chemical oxygen demand (COD) above 5800 mgO2 L-1) by photo-Fenton's oxidation with the goal of improving the organic matter degradation reached previously, in another work, where the Fenton process was applied in a bubbling reactor. Thus, the process was carried out in a bubble photo reactor (BPR) wherein continuous air supply ensures an efficient mixing of the liquid phase. The effect of the main operatory parameters that influence the WW treatment (i.e., H2O2 and Fe2+ concentrations, initial pH, and UV-Vis radiation intensity) were evaluated, being found that in the best conditions tested (pH0 = 4.6, [Fe2+] = 0.1 g L-1, [H2O2] = 18 g L-1, Qair = 1.0 L min-1-measured at room temperature and atmospheric pressure-and irradiance of 500 W m-2), removals of 95% and 97% for total organic carbon (TOC) and COD, respectively, were achieved. Still, a high reduction of the concentration of the main constituents of this WW was reached, being total for aniline and 86% for sulfanilic acid. The continuous air supply reactor configuration was compared with magnetic stirring; similar mineralization was achieved. However, the air bubbling promotes a good heat transfer within the reactor, minimizing temperature gradients, which is quite advantageous due to the strong exothermicity of the oxidation process during the treatment of such highly loaded real effluents.
Collapse
Affiliation(s)
- Emanuel F S Sampaio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| | - Vanessa N Lima
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
3
|
Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, Teoh TP, Lehl HK, Thung WE. Constructed wetland-microbial fuel cell for azo dyes degradation and energy recovery: Influence of molecular structure, kinetics, mechanisms and degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137370. [PMID: 32325554 DOI: 10.1016/j.scitotenv.2020.137370] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.
Collapse
Affiliation(s)
- Yoong-Ling Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Li-Ngee Ho
- School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yoong-Sin Oon
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Tean-Peng Teoh
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Harvinder Kaur Lehl
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Wei-Eng Thung
- Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zheng J, Yan K, Wu Z, Liu M, Wang Z. Effective Removal of Sulfanilic Acid From Water Using a Low-Pressure Electrochemical RuO 2-TiO 2@Ti/PVDF Composite Membrane. Front Chem 2018; 6:395. [PMID: 30238003 PMCID: PMC6135927 DOI: 10.3389/fchem.2018.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Removal of sulfanilic acid (SA) from water is an urgent but still challenging task. Herein, we developed a low pressure electrochemical membrane filtration (EMF) system for SA decontamination using RuO2-TiO2@Ti/PVDF composite membrane to serve as not only a filter but also an anode. Results showed that efficient removal of SA was achieved in this EMF system. At a charging voltage of 1.5 V and a electrolyte concentration of 15 mM, flow-through operation with a hydraulic retention time (HRT) of 2 h led to a high SA removal efficiency (80.4%), as expected from the improved contact reaction of this compound with ROS present at the anode surface. Cyclic voltammetry (CV) analysis indicated that the direct anodic oxidation played a minor role in SA degradation. Electron spin resonance (ESR) spectra demonstrated the production of •OH in the EMF system. Compared to the cathodic polarization, anodic generated ROS was more likely responsible for SA removal. Scavenging tests suggested that adsorbed •OH on the anode (>•OH) played a dominant role in SA degradation, while O2•- was an important intermediate oxidant which mediated the production of •OH. The calculated mineralization current efficiency (MCE) of the flow-through operated system 29.3% with this value much higher than that of the flow-by mode (5.1%). As a consequence, flow-through operation contributed to efficient oxidation of SA toward CO2 and nontoxic carboxylic acids accounting for 71.2% of initial C. These results demonstrate the potential of the EMF system to be used as an effective technology for water decontamination.
Collapse
Affiliation(s)
- Junjian Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Kaili Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Mingxian Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Guo Y, Xue Q, Cui K, Zhang J, Wang H, Zhang H, Yuan F, Chen H. Study on the degradation mechanism and pathway of benzene dye intermediate 4-methoxy-2-nitroaniline via multiple methods in Fenton oxidation process. RSC Adv 2018; 8:10764-10775. [PMID: 35541521 PMCID: PMC9078900 DOI: 10.1039/c8ra00627j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 11/21/2022] Open
Abstract
Benzene dye intermediate (BDI) 4-methoxy-2-nitroaniline (4M2NA) wastewater has caused significant environmental concern due to its strong toxicity and potential carcinogenic effects. Reports concerning the degradation of 4M2NA by advanced oxidation process are limited. In this study, 4M2NA degradation by Fenton oxidation has been studied to obtain more insights into the reaction mechanism involved in the oxidation of 4M2NA. Results showed that when the 4M2NA (100 mg L-1) was completely decomposed, the TOC removal efficiency was only 30.70-31.54%, suggesting that some by-products highly recalcitrant to the Fenton oxidation were produced. UV-Vis spectra analysis based on Gauss peak fitting, HPLC analysis combined with two-dimensional correlation spectroscopy and GC-MS detection were carried out to clarify the degradation mechanism and pathway of 4M2NA. A total of nineteen reaction intermediates were identified and two possible degradation pathways were illustrated. Theoretical TOC calculated based on the concentration of oxalic acid, acetic acid, formic acid, and 4M2NA in the degradation process was nearly 94.41-97.11% of the measured TOC, indicating that the oxalic acid, acetic acid and formic acid were the main products. Finally, the predominant degradation pathway was proposed. These results could provide significant information to better understand the degradation mechanism of 4M2NA.
Collapse
Affiliation(s)
- Ying Guo
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Qiang Xue
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Hui Wang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Huanzhen Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Fang Yuan
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China +86-10-82322281 +86-10-82323345
| |
Collapse
|
6
|
Zheng J, Ma J, Wang Z, Xu S, Waite TD, Wu Z. Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration: Mechanisms and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2757-2765. [PMID: 28170232 DOI: 10.1021/acs.est.6b05625] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Removal of recalcitrant anthropogenic contaminants from water calls for the development of cost-effective treatment technologies. In this work, a novel electrochemical membrane filtration (EMF) process using a conducting microfiltration membrane as the cathode has been developed and the degradation of sulphanilic acid (SA) examined. The electrochemical degradation of SA in flow-by mode followed pseudo-first-order kinetics with the degradation rate enhanced with increase in charging voltage. Hydrogen peroxide as well as oxidants such as HO• and Fe(IV)O2+ were generated electrochemically with HO• found to be the dominant oxidant responsible for SA degradation. In addition to the anodic splitting of water, HO• was formed via a heterogeneous Fenton process with surface-bound Fe(II) resulting from aerobic corrosion of the steel mesh. In flow-through mode, the removal rate of SA was 13.0% greater than obtained in flow-by mode, presumably due to the better contact of the contaminant with the oxidants generated in the vicinity of the membrane surface. A variety of oxidized products including hydroquinone, p-benzoquinone, oxamic acid, maleic acid, fumaric acid, acetic acid, formic acid, and oxalic acid were identified and an electrochemical degradation pathway proposed. These findings highlight the potential of the cathodic EMF process as an effective technology for water purification.
Collapse
Affiliation(s)
- Junjian Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Shaoping Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| |
Collapse
|
7
|
Cheng HY, Liang B, Mu Y, Cui MH, Li K, Wu WM, Wang AJ. Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs). WATER RESEARCH 2015; 81:72-83. [PMID: 26043373 DOI: 10.1016/j.watres.2015.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
The challenge of energy generation from biodegradation of recalcitrant organics in microbial fuel cells (MFCs) is mainly attributed to their persistence to degradation under anaerobic condition in anode chamber of MFCs. In this work, we demonstrated that electricity generation from aniline, a typical recalcitrant organic matter under anaerobic condition was remarkably facilitated by employing oxygen into bioanode of MFCs. By exposing bioanode to air, electrons of 47.2 ± 6.9 C were recovered with aniline removal efficiency of 91.2 ± 2.2% in 144 h. Limited oxygen supply (the anodic headspace was initially filled with air and then closed) resulted in the decrease of electrons recovery and aniline removal efficiency by 52.5 ± 9.4% and 74.2 ± 2.1%, respectively, and further decline by respective 64.3 ± 4.5% and 82.7 ± 1.0% occurred under anaerobic condition. Community analysis showed that anode biofilm was predominated by several aerobic aniline degrading bacteria (AADB) and anode-respiration bacteria (ARB), which likely cooperated with each other and finally featured the energy recovery from aniline. Cyclic voltammetry indicated that anodic bacteria transferred electrons to anode mainly through electron shuttle. This study provided a new sight to acquaint us with the positive role of oxygen in biodegradation of recalcitrant organics on anode as well as electricity generation.
Collapse
Affiliation(s)
- Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, PR China
| | - Min-Hua Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
8
|
Gavazza S, Guzman JJL, Angenent LT. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment. Biodegradation 2015; 26:151-60. [DOI: 10.1007/s10532-015-9723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
|
9
|
Juárez-Ramírez C, Galíndez-Mayer J, Ruiz-Ordaz N, Ramos-Monroy O, Santoyo-Tepole F, Poggi-Varaldo H. Steady-state inhibition model for the biodegradation of sulfonated amines in a packed bed reactor. N Biotechnol 2014; 32:379-86. [PMID: 25109268 DOI: 10.1016/j.nbt.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
Abstract
Aromatic amines are important industrial products having in their molecular structure one or more aromatic rings. These are used as precursors for the synthesis of dyes, adhesives, pesticides, rubber, fertilizers and surfactants. The aromatic amines are common constituents of industrial effluents, generated mostly by the degradation of azo dyes. Several of them are a threat to human health because they can by toxic, allergenic, mutagenic or carcinogenic. The most common are benzenesulfonic amines, such as 4-ABS (4-aminobenzene sulfonic acid) and naphthalene sulfonic amines, such as 4-ANS (4-amino naphthalene sulfonic acid). Sometimes, the mixtures of toxic compounds are more toxic or inhibitory than the individual compounds, even for microorganisms capable of degrading them. Therefore, the aim of this study was to evaluate the degradation of the mixture 4-ANS plus 4-ABS by a bacterial community immobilized in fragments of volcanic stone, using a packed bed continuous reactor. In this reactor, the amines loading rates were varied from 5.5 up to 69 mg L(-1) h(-1). The removal of the amines was determined by high-performance liquid chromatography and chemical oxygen demand. With this information, we have studied the substrate inhibition of the removal rate of the aromatic amines during the degradation of the mixture of sulfonated aromatic amines by the immobilized microorganisms. Experimental results were fitted to parabolic, hyperbolic and linear inhibition models. The model that best characterizes the inhibition of the specific degradation rate in the biofilm reactor was a parabolic model with values of RXM=58.15±7.95 mg (10(9) cells h)(-1), Ks=0.73±0.31 mg L(-1), Sm=89.14±5.43 mg L(-1) and the exponent m=5. From the microbial community obtained, six cultivable bacterial strains were isolated and identified by sequencing their 16S rDNA genes. The strains belong to the genera Variovorax, Pseudomonas, Bacillus, Arthrobacter, Nocardioides and Microbacterium. This microbial consortium could use the mixture of aromatic amines as sources of carbon, nitrogen, energy and sulfur.
Collapse
Affiliation(s)
- Cleotilde Juárez-Ramírez
- Laboratorio de Bioingeniería de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, Distrito Federal, Mexico.
| | - Juvencio Galíndez-Mayer
- Laboratorio de Bioingeniería de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, Distrito Federal, Mexico.
| | - Nora Ruiz-Ordaz
- Laboratorio de Bioingeniería de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, Distrito Federal, Mexico
| | - Oswaldo Ramos-Monroy
- Laboratorio de Bioingeniería de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, Distrito Federal, Mexico
| | - Fortunata Santoyo-Tepole
- Laboratorio de Bioingeniería de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, Distrito Federal, Mexico
| | - Héctor Poggi-Varaldo
- Laboratorio de Biotecnología Ambiental del Centro Nacional de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Distrito Federal, Mexico
| |
Collapse
|