1
|
Hidalgo KJ, Cueva LG, Giachini AJ, Schneider MR, Soriano AU, Baessa MP, Martins LF, Oliveira VM. Long-term microbial functional responses in soil contaminated with biofuel/fossil fuel blends triggered by different bioremediation treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125685. [PMID: 39826606 DOI: 10.1016/j.envpol.2025.125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/25/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
The use of biofuel blends with fossil fuels is widespread globally, raising concerns over novel contamination types in environments impacted by these mixtures. This study investigates the microbial functional in soils contaminated by biofuel and fossil fuel blends and subjected to various bioremediation treatments. Using metagenomic analysis, it was compared hydrocarbon degradation functional profiles across areas polluted with ethanol/gasoline and biodiesel/diesel blends. Results indicate that long-term natural attenuation areas exhibited distinct functional profiles compared to actively bioremediated areas. However, same hydrocarbon degradation genes were enriched across all areas, highlighting functional redundancy despite taxonomic variation in hydrocarbon-degrading microbes. Finally, several of the keystone species found were hydrocarbon degraders, such as members of the families Clostridiaceae and Comamonadaceae, representing potential targets for biostimulation in future remediation efforts. This long-term, field-scale study uniquely focuses on the functional profiles of microbial communities, offering new insights into the bioremediation of complex biofuel/fossil fuel contaminants in situ.
Collapse
Affiliation(s)
- K J Hidalgo
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil.
| | - L G Cueva
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil
| | - A J Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - M R Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - A U Soriano
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - L F Martins
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - V M Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil
| |
Collapse
|
2
|
Wu S, Yang Y, Han X, Deng S, Kang J, Xi B, Jiang Y. Pilot-scale experimental study on the enhanced natural attenuation of complex organic contaminants based on the recharge of electron acceptors. WATER RESEARCH 2024; 268:122731. [PMID: 39509769 DOI: 10.1016/j.watres.2024.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Anaerobic biodegradation plays a crucial role in attenuating organic contaminants in natural aquifers, where the concentration and type of electron acceptors directly determine the stages and rates of degradation progress. In this study, nitrate depletion was monitored in a simulated pilot-scale aquifer contaminated with toluene and trichloroethylene, while sulfate became the new periodic electron acceptor, accompanied by a decrease in the contaminant attenuation rate. Consequently, nitrate was injected into the contaminated plume in stages, and the hydro- and biochemical impacts were further monitored. The results revealed that the active recharge of nitrate became a new electron donor involved in anaerobic reduction processes, with contaminants attenuation rates increased by 2.48-3.88 times compared with that before injection. Moreover, the active recharge of nitrate inhibited further consumption of sulfate and oxidized pre-existing sulfides, which reduced the biological toxicity of the aquatic environment and provided favorable conditions for the growth of nitrate-reducing microorganisms. This study evaluated the enhancement of natural attenuation by recharging nitrate as an electron acceptor, providing a theoretical basis for environmentally friendly and economic remediation of petroleum-contaminated aquifers.
Collapse
Affiliation(s)
- Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiayu Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Schryer AD, Siciliano SD. Do phosphorus amendments enhance biodegradation activity in stalled petroleum hydrocarbon-contaminated soil? JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:669-683. [PMID: 38993109 DOI: 10.1002/jeq2.20594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/18/2024] [Indexed: 07/13/2024]
Abstract
Phosphorus (P) fertilizers promote soil petroleum-hydrocarbon (PHC) bioremediation by correcting carbon-to-P ratio imbalances. While these inputs create conditions favorable to microbial growth, areas of a site or an entire site with low degradation rates (i.e., "stalled") occur for unknown reasons. We hypothesized that soil conditions limit P bioavailability, leading to stalls in PHC bioremediation, and adding the correct P amendment restarts microbial activity. Soils were collected and characterized from four cold calcareous PHC-impacted sites in Saskatchewan, Canada, undergoing bioremediation. A generalized linear mixed model identified that regions with lower degradation rates possessed a neutral pH with high magnetic and salinity values. In a subsequent laboratory experiment, the proportion of benzene degraded at greater rates within active (i.e., higher degradation rates) than stalled soils, thereby following model predictions (p-value = 0.19, Kruskal-Wallis). The PHC degradation efficiency of different P amendments was tested by doping stalled soils (n = 3) with one of five treatments: 0 (control), 0 (autoclaved control), or 50 mg phosphate kg-1 soil as sodium diphosphate, triethyl phosphate, or tripolyphosphate. Tripolyphosphate accelerated benzene degradation (75.5 ± 5.4%) in one stalled soil (Outlook 323) and increased degradation non-significantly (43.9 ± 9.4%) in another (Allan 917). Alternatively, the final sample (Davidson 421) possessed the greatest benzene removal with no amendments. This implies that soil P bioavailability may not be the sole cause of decreased microbial activity. Accordingly, combining model outputs with mineralogy and microbiology investigations could enhance PHC biodegradation rates in these cold calcareous soils.
Collapse
Affiliation(s)
- Aimée D Schryer
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Brooks CN, Field EK. Microbial community response to hydrocarbon exposure in iron oxide mats: an environmental study. Front Microbiol 2024; 15:1388973. [PMID: 38800754 PMCID: PMC11116660 DOI: 10.3389/fmicb.2024.1388973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocarbon pollution is a widespread issue in both groundwater and surface-water systems; however, research on remediation at the interface of these two systems is limited. This interface is the oxic-anoxic boundary, where hydrocarbon pollutant from contaminated groundwaters flows into surface waters and iron mats are formed by microaerophilic iron-oxidizing bacteria. Iron mats are highly chemically adsorptive and host a diverse community of microbes. To elucidate the effect of hydrocarbon exposure on iron mat geochemistry and microbial community structure and function, we sampled iron mats both upstream and downstream from a leaking underground storage tank. Hydrocarbon-exposed iron mats had significantly higher concentrations of oxidized iron and significantly lower dissolved organic carbon and total dissolved phosphate than unexposed iron mats. A strong negative correlation between dissolved phosphate and benzene was observed in the hydrocarbon-exposed iron mats and water samples. There were positive correlations between iron and other hydrocarbons with benzene in the hydrocarbon-exposed iron mats, which was unique from water samples. The hydrocarbon-exposed iron mats represented two types, flocculent and seep, which had significantly different concentrations of iron, hydrocarbons, and phosphate, indicating that iron mat is also an important context in studies of freshwater mats. Using constrained ordination, we found the best predictors for community structure to be dissolved oxygen, pH, and benzene. Alpha diversity and evenness were significantly lower in hydrocarbon-exposed iron mats than unexposed mats. Using 16S rDNA amplicon sequences, we found evidence of three putative nitrate-reducing iron-oxidizing taxa in microaerophile-dominated iron mats (Azospira, Paracoccus, and Thermomonas). 16S rDNA amplicons also indicated the presence of taxa that are associated with hydrocarbon degradation. Benzene remediation-associated genes were found using metagenomic analysis both in exposed and unexposed iron mats. Furthermore, the results indicated that season (summer vs. spring) exacerbates the negative effect of hydrocarbon exposure on community diversity and evenness and led to the increased abundance of numerous OTUs. This study represents the first of its kind to attempt to understand how contaminant exposure, specifically hydrocarbons, influences the geochemistry and microbial community of freshwater iron mats and further develops our understanding of hydrocarbon remediation at the land-water interface.
Collapse
Affiliation(s)
- Chequita N. Brooks
- Department of Biology, East Carolina University, Greenville, NC, United States
- Louisiana Universities Marine Consortium, Chauvin, LA, United States
| | - Erin K. Field
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Yuan L, Wang K, Zhao Q, Yang L, Wang G, Jiang M, Li L. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119342. [PMID: 37890298 DOI: 10.1016/j.jenvman.2023.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Groundwater is an important component of water resources. Mixed pollutants comprising heavy metals (HMs) and petroleum hydrocarbons (PHs) from industrial activities can contaminate groundwater through such processes as rainfall infiltration, runoff and discharge, which pose direct threats to human health through the food chain or drinking water. In situ remediation of contaminated groundwater is an important way to improve the quality of a water environment, develop water resources and ensure the safety of drinking water. Bioremediation and permeable reactive barriers (PRBs) were discussed in this paper as they were effective and affordable for in situ remediation of complex contaminated groundwater. In addition, media types, technology combinations and factors for the PRBs were highlighted. Finally, insights and outlooks were presented for in situ remediation technologies for complex groundwater contaminated with HMs and PHs. The selection of an in situ remediation technology should be site specific. The remediation of complex contaminated groundwater can be approached from various perspectives, including the development of economical materials, the production of slow-release and encapsulated materials, and a combination of multiple technologies. This review is expected to provide technical guidance and assistance for in situ remediation of complex contaminated groundwater.
Collapse
Affiliation(s)
- Luzi Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangzhi Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Ali M, Song X, Wang Q, Zhang Z, Che J, Chen X, Tang Z, Liu X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120831. [PMID: 36509345 DOI: 10.1016/j.envpol.2022.120831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Despite the co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the field, to date, knowledge on the bioremediation of benzene and benzo[a]pyrene (BaP) mixed contaminants is limited. In this study, the mechanisms underlying the biodegradation of benzene and BaP under individual and co-contaminated conditions followed by the enhanced biodegradation using methanol, ethanol, and vegetable oil as biostimulants were investigated. The results demonstrated that the benzene biodegradation was highly reduced under the co-contaminated condition compared to the individual benzene contamination, whereas the BaP biodegradation was slightly enhanced with the co-contamination of benzene. Moreover, biostimulation significantly improved the biodegradation of both contaminants under co-contaminated conditions. A trend of significant reduction in the bioavailable BaP contents was observed in all biostimulant-enhanced groups, implying that the bioavailable BaP was the preferred biodegradable BaP fraction. Furthermore, the enzymatic activity analysis revealed a significant increase in lipase and dehydrogenase (DHA) activities, as well as a reduction in the catalase and polyphenol oxidase, suggesting that the increased hydrolysis of fats and proton transfer, as well as the reduced oxidative stress, contributed to the enhanced benzene and BaP biodegradation in the vegetable oil treatment. In addition, the microbial composition analysis results demonstrated that the enriched functional genera contributed to the increased biodegradation efficiency, and the functional genera in the microbial consortium responded differently to different biostimulants, and competitive growth was observed in the biostimulant-enhanced treatments. In addition, the enrichment of Pseudomonas and Rhodococcus species was noticed during the biostimulation of benzene and BaP co-contamination soil, and was positively correlated with the DHA enzyme activities, indicating that these species encode DHA genes which contributed to the higher biodegradation. In conclusion, multiple lines of evidence were provided to shed light on the mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX co-contamination with native microbial consortiums.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai, 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
7
|
Chen T, Wu Y, Wang J, Philippe CFX. Assessing the Biodegradation of BTEX and Stress Response in a Bio-Permeable Reactive Barrier Using Compound-Specific Isotope Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148800. [PMID: 35886652 PMCID: PMC9322891 DOI: 10.3390/ijerph19148800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022]
Abstract
By using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.
Collapse
Affiliation(s)
- Tianyu Chen
- Stake Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China;
| | - Yan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
- Correspondence:
| | - Corvini François-Xavier Philippe
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Basel, Switzerland
| |
Collapse
|
8
|
Persulfate Oxidation Coupled with Biodegradation by Pseudomonas fluorescens Enhances Naphthenic Acid Remediation and Toxicity Reduction. Microorganisms 2021; 9:microorganisms9071502. [PMID: 34361937 PMCID: PMC8306852 DOI: 10.3390/microorganisms9071502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction of bitumen from the Albertan oilsands produces large amounts of oil sands process-affected water (OSPW) that requires remediation. Classical naphthenic acids (NAs), a complex mixture of organic compounds containing O2- species, are present in the acid extractable organic fraction of OSPW and are a primary cause of acute toxicity. A potential remediation strategy is combining chemical oxidation and biodegradation. Persulfate as an oxidant is advantageous, as it is powerful, economical, and less harmful towards microorganisms. This is the first study to examine persulfate oxidation coupled to biodegradation for NA remediation. Merichem NAs were reacted with 100, 250, 500, and 1000 mg/L of unactivated persulfate at 21 °C and 500 and 1000 mg/L of activated persulfate at 30 °C, then inoculated with Pseudomonas fluorescens LP6a after 2 months. At 21 °C, the coupled treatment removed 52.8-98.9% of Merichem NAs, while 30 °C saw increased removals of 99.4-99.7%. Coupling persulfate oxidation with biodegradation improved removal of Merichem NAs and chemical oxidation demand by up to 1.8× and 6.7×, respectively, and microbial viability was enhanced up to 4.6×. Acute toxicity towards Vibrio fischeri was negatively impacted by synergistic interactions between the persulfate and Merichem NAs; however, it was ultimately reduced by 74.5-100%. This study supports that persulfate oxidation coupled to biodegradation is an effective and feasible treatment to remove NAs and reduce toxicity.
Collapse
|
9
|
Müller C, Knöller K, Lucas R, Kleinsteuber S, Trabitzsch R, Weiß H, Stollberg R, Richnow HH, Vogt C. Benzene degradation in contaminated aquifers: Enhancing natural attenuation by injecting nitrate. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 238:103759. [PMID: 33461044 DOI: 10.1016/j.jconhyd.2020.103759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Natural attenuation processes depend on the availability of suitable electron acceptors. At the megasite Zeitz, concentrations of the main contaminant benzene were observed to increase constantly in the lower aquifer to levels of more than 2.5 mM. This was accompanied by decreasing concentrations of sulphate (SO42-), which has been previously shown to be the main electron acceptor for benzene oxidation at this site, resulting in an electron acceptor-limited, sulphidic benzene plume. Therefore, a field experiment was conducted to stimulate benzene biodegradation by injecting nitrate (NO3-) into the sulphidic benzene plume aiming (i) to recycle sulphate by nitrate-dependent sulphide oxidation, and (ii) to serve as direct electron acceptor for benzene oxidation. Within 60 days, 6.74 tons sodium nitrate (NaNO3) were injected into the lower aquifer, and the resulting biogeochemical effects within the benzene plume were monitored for more than one year by chemical and microbiological analyses of groundwater samples taken from various depths of ten monitoring wells located in three observation lines downstream of nitrate injection. Nitrate was microbiologically consumed, as shown by changes in δ15N-NO3- and δ18O-NO3- values, partial nitrite accumulation, and changing ratios of Na+/NO3-. Main electron donors for nitrate reduction were reduced sulphur compounds, verified by changing δ34S-SO42- and δ18O-SO42- values, partially increasing sulphate concentrations, and strongly increasing abundances of typical sulphur-oxidizing, nitrate-reducing bacterial taxa within the nitrate plume. The general absent hydrogen isotope fractionation of benzene, also in the sulphidic, nitrate-free part of the plume, indicates that benzene was not biodegraded by sulphate-reducing consortia. However, detected small carbon isotope fractionation of benzene points to in situ benzene biodegradation processes in the plume, probably supported by nitrate. In conclusion, nitrate injection resulted in changing redox conditions and recycling of sulphate in the sulphidic, sulphate-depleted benzene plume due to microbial oxidation of reduced sulphur species, leading to presumably favored conditions for in situ benzene biodegradation.
Collapse
Affiliation(s)
- Christin Müller
- Helmholtz-Centre for Environmental Research UFZ, Department Catchment Hydrology, Germany.
| | - Kay Knöller
- Helmholtz-Centre for Environmental Research UFZ, Department Catchment Hydrology, Germany
| | - Rico Lucas
- Helmholtz-Centre for Environmental Research UFZ, Department Environmental Microbiology, Germany
| | - Sabine Kleinsteuber
- Helmholtz-Centre for Environmental Research UFZ, Department Environmental Microbiology, Germany
| | - Ralf Trabitzsch
- Helmholtz-Centre for Environmental Research UFZ, Department Environmental Informatics, Germany
| | - Holger Weiß
- Helmholtz-Centre for Environmental Research UFZ, Department Environmental Informatics, Germany
| | - Reiner Stollberg
- Helmholtz-Centre for Environmental Research UFZ, Department Environmental Informatics, Germany
| | - Hans Hermann Richnow
- Helmholtz-Centre for Environmental Research UFZ, Department Isotope Biogeochemistry, Germany
| | - Carsten Vogt
- Helmholtz-Centre for Environmental Research UFZ, Department Isotope Biogeochemistry, Germany
| |
Collapse
|
10
|
Huang X, Shen S, Lin Y. Biodegradation of catechol by
Pseudomonas fluorescens
isolated from petroleum‐impacted soil. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyan Huang
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Siyang Shen
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Yen‐Han Lin
- Department of Chemical and Biological Engineering University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
11
|
Centler F, Günnigmann S, Fetzer I, Wendeberg A. Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining. Microorganisms 2020; 8:microorganisms8020190. [PMID: 32019172 PMCID: PMC7074749 DOI: 10.3390/microorganisms8020190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Natural microbial communities in soils are highly diverse, allowing for rich networks of microbial interactions to unfold. Identifying key players in these networks is difficult as the distribution of microbial diversity at the local scale is typically non-uniform, and is the outcome of both abiotic environmental factors and microbial interactions. Here, using spatially resolved microbial presence-absence data along an aquifer transect contaminated with hydrocarbons, we combined co-occurrence analysis with association rule mining to identify potential keystone species along the hydrocarbon degradation process. Derived co-occurrence networks were found to be of a modular structure, with modules being associated with specific spatial locations and metabolic activity along the contamination plume. Association rules identify species that never occur without another, hence identifying potential one-sided cross-feeding relationships. We find that hub nodes in the rule network appearing in many rules as targets qualify as potential keystone species that catalyze critical transformation steps and are able to interact with varying partners. By contrasting analysis based on data derived from bulk samples and individual soil particles, we highlight the importance of spatial sample resolution. While individual inferred interactions are hypothetical in nature, requiring experimental verification, the observed global network patterns provide a unique first glimpse at the complex interaction networks at work in the microbial world.
Collapse
Affiliation(s)
- Florian Centler
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
- Correspondence: ; Tel.: +49-341-235-1336
| | - Sarah Günnigmann
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
| | - Ingo Fetzer
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 11419 Stockholm, Sweden
| | - Annelie Wendeberg
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
| |
Collapse
|
12
|
Huang X, Lin Y. Reconstruction and analysis of a three‐compartment genome‐scale metabolic model for
Pseudomonas fluorescens. Biotechnol Appl Biochem 2020; 67:133-139. [DOI: 10.1002/bab.1852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoyan Huang
- Department of Chemical and Biological EngineeringUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Yen‐Han Lin
- Department of Chemical and Biological EngineeringUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
13
|
Chen L, Hu Q, Zhang X, Cai Z, Wang Y. Effects of ZnO nanoparticles on the performance of anaerobic membrane bioreactor: An attention to the characteristics of supernatant, effluent and biomass community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:743-755. [PMID: 30851584 DOI: 10.1016/j.envpol.2019.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Two laboratory-scale anaerobic membrane bioreactor (AnMBRs) were built to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on their performance, and the recovery phase was also examined. Results showed that the addition of ZnO-NPs with 0.4 mg/L caused significant deteriorations of AnMBR performance, including decrements of chemical oxygen demand (COD) removal efficiency from 96.4% to 81.5% and biogas production from 0.36 to 0 L/g COD removal within 40 days. A significant increment from 13.2 to 52.1 mg/L in soluble microbial products (SMP) was obtained, while no obvious effect on colloids was observed except an increased fluctuation of colloid concentration. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis revealed remarkable changes of compounds in effluent with exposure to ZnO-NPs, and some new alkanes and esters were produced, such as Cyclobutane, 1,2-diethyl-, trans-, Tetradecane, Cyclopropane, octyl-, and Butanoic acid, methyl ester. The microbial community was compared using high-throughput sequencing, clearly showing the changes in both bacteria and archaea communities. Furthermore, results for recovery phase indicated that the AnMBR performance can be recovered within around 60 days after stopping ZnO-NPs addition, accompanied by the decrement of zinc concentration mainly adsorbed by sludge.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Qinzheng Hu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xin Zhang
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| | - Zongting Cai
- Engineering Sciences, University College London, London, WC1E 6BT, UK
| | - Yue Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Zhang C, Guo J, Lian J, Song Y, Lu C, Li H. Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: A study of kinetics, ORP and bacterial community structure. BIORESOURCE TECHNOLOGY 2018; 269:40-49. [PMID: 30149253 DOI: 10.1016/j.biortech.2018.08.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 05/13/2023]
Abstract
Excess sulfate production and low concentration of perchlorate removal are the main problems for sulfur-based perchlorate reduction reactor. In this study, the problems were firstly solved by step-feeding under mixotrophic conditions. The performances of step-feed sulfur-based reactor (SFSBR) and up-flow sulfur-based reactor (UFSBR) are compared. At perchlorate of 194 mg/L, acetate of 28.8 mg/L and hydraulic retention time of 0.9 h, the Half-order reaction rate constant and the sulfate production of SFSBR were 29.7 mg1/2/L1/2·h and 171 mg/L, respectively, which were superior to those of UFSBR. The oxidation-reduction potential values of SFSBR were lower than that of UFSBR. Meanwhile, the biodiversity along the height of the reactor was decreased by step-feeding. Principal component analysis showed significant interrelations existed among the bacterial community composition and the operational/environmental conditions in each treatment zone. Consequently, the SFSBR provides an effectively alteration for the removal of high perchlorate concentration and control sulfate.
Collapse
Affiliation(s)
- Chao Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China; School of Environment Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Caicai Lu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| |
Collapse
|
15
|
Sharma A, Lee BK. Growth of TiO 2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Chiu H, Verpoort F, Liu J, Chang Y, Kao C. Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Siciliano SD, Chen T, Phillips C, Hamilton J, Hilger D, Chartrand B, Grosskleg J, Bradshaw K, Carlson T, Peak D. Total Phosphate Influences the Rate of Hydrocarbon Degradation but Phosphate Mineralogy Shapes Microbial Community Composition in Cold-Region Calcareous Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5197-5206. [PMID: 27082646 DOI: 10.1021/acs.est.5b05911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Managing phosphorus bioaccessibility is critical for the bioremediation of hydrocarbons in calcareous soils. This paper explores how soil mineralogy interacts with a novel biostimulatory solution to both control phosphorus bioavailability and influence bioremediation. Two large bore infiltrators (1 m diameter) were installed at a PHC contaminated site and continuously supplied with a solution containing nutrients and an electron acceptor. Soils from eight contaminated sites were prepared and pretreated, analyzed pretrial, spiked with diesel, placed into nylon bags into the infiltrators, and removed after 3 months. From XAS, we learned that three principal phosphate phases had formed: adsorbed phosphate, brushite, and newberyite. All measures of biodegradation in the samples (in situ degradation estimates, mineralization assays, culturable bacteria, catabolic genes) varied depending upon the soil's phosphate speciation. Notably, adsorbed phosphate increased anaerobic phenanthrene degradation and bzdN catabolic gene prevalence. The dominant mineralogical constraints on community composition were the relative amounts of adsorbed phosphate, brushite, and newberyite. Overall, this study finds that total phosphate influences microbial community phenotypes whereas relative percentages of phosphate minerals influences microbial community genotype composition.
Collapse
Affiliation(s)
- Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Tingting Chen
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Courtney Phillips
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Jordan Hamilton
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - David Hilger
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | | | - Jay Grosskleg
- Federated Cooperatives Limited, Saskatoon S7N 5A8, Canada
| | - Kris Bradshaw
- Federated Cooperatives Limited, Saskatoon S7N 5A8, Canada
| | - Trevor Carlson
- Federated Cooperatives Limited, Saskatoon S7N 5A8, Canada
| | - Derek Peak
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| |
Collapse
|
18
|
|
19
|
Aleer S, Adetutu EM, Weber J, Ball AS, Juhasz AL. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 136:27-36. [PMID: 24553295 DOI: 10.1016/j.jenvman.2014.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed.
Collapse
Affiliation(s)
- Sam Aleer
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Eric M Adetutu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia; School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - John Weber
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Andrew S Ball
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
20
|
Wang W, Yang Q, Zheng S, Wu D. Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment. BIORESOURCE TECHNOLOGY 2013; 149:292-300. [PMID: 24121371 DOI: 10.1016/j.biortech.2013.09.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Bamboo industry wastewater (BIWW) poses severe environmental problems because of its high organic matter content. In this study, anaerobic membrane bioreactor (AnMBR) was applied for BIWW treatment. During the start-up stage, the system presented an effective degradation with a final COD removal of 91%. Compared to the intermittent mode, a higher membrane rejection (45% COD, 60% NH3-N) was obtained when the system was operated continuously. N2 flushing was applied for membrane cleaning, and the cleaning efficiency was significantly influenced by the hydraulic retention time (HRT). While operated under HRT ≥ 5 d, membrane fouling could be effectively controlled. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis indicated the membrane top area suffered the most serious fouling. Gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses revealed most organic matter in BIWW was eliminated by AnMBR. However, benzene and fluoro derivatives were detected in the permeate as the by-products.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Hi-Legend Environmental Science and Technology Company, Ltd., Hangzhou 310000, PR China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | |
Collapse
|