1
|
Kovalev AA, Kovalev DA, Zhuravleva EA, Laikova AA, Shekhurdina SV, Vivekanand V, Litti YV. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. BIORESOURCE TECHNOLOGY 2023; 376:128919. [PMID: 36934902 DOI: 10.1016/j.biortech.2023.128919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.
Collapse
Affiliation(s)
- Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Alexandra A Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| |
Collapse
|
2
|
Pandey AK, Park J, Ko J, Joo HH, Raj T, Singh LK, Singh N, Kim SH. Machine learning in fermentative biohydrogen production: Advantages, challenges, and applications. BIORESOURCE TECHNOLOGY 2023; 370:128502. [PMID: 36535617 DOI: 10.1016/j.biortech.2022.128502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen can be produced in an environmentally friendly manner through biological processes using a variety of organic waste and biomass as feedstock. However, the complexity of biological processes limits their predictability and reliability, which hinders the scale-up and dissemination. This article reviews contemporary research and perspectives on the application of machine learning in biohydrogen production technology. Several machine learning algorithems have recently been implemented for modeling the nonlinear and complex relationships among operational and performance parameters in biohydrogen production as well as predicting the process performance and microbial population dynamics. Reinforced machine learning methods exhibited precise state prediction and retrieved the underlying kinetics effectively. Machine-learning based prediction was also improved by using microbial sequencing data as input parameters. Further research on machine learning could be instrumental in designing a process control tool to maintain reliable hydrogen production performance and identify connection between the process performance and the microbial population.
Collapse
Affiliation(s)
- Ashutosh Kumar Pandey
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeun Ko
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hwan-Hong Joo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Lalit Kumar Singh
- Department of Biochemical Engineering, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh (UP), India
| | - Noopur Singh
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh (UP), India
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Rogeri RC, Fuess LT, Eng F, Borges ADV, Araujo MND, Damianovic MHRZ, Silva AJD. Strategies to control pH in the dark fermentation of sugarcane vinasse: Impacts on sulfate reduction, biohydrogen production and metabolite distribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116495. [PMID: 36279773 DOI: 10.1016/j.jenvman.2022.116495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
pH is notably known as the main variable defining distinct metabolic pathways during sugarcane vinasse dark fermentation. However, different alkalinizing (e.g. sodium bicarbonate; NaHCO3) and/or neutralizing (e.g. sodium hydroxide; NaOH) approaches were never directly compared to understand the associated impacts on metabolite profiles. Three anaerobic structured-bed reactors (AnSTBR) were operated in parallel and subjected to equivalent operational parameters, except for the pH control: an acidogenic-sulfidogenic (R1; NaOH + NaHCO3) designed to remove sulfur compounds (sulfate and sulfide), a hydrogenogenic (R2; NaOH) aimed to optimize biohydrogen (bioH2) production, and a strictly fermentative system without pH adjustment (R3) to mainly evaluate lactic acid (HLa) production and other soluble metabolites. NaHCO3 dosing triggered advantages not only for sulfate reduction (up to 56%), but also to enhance the stripping of sulfide to the gas phase (75-96% of the theoretical sulfide produced) by the high and constant biogas flow resulting from the CO2 released during NaHCO3 dissociation. Meanwhile, molasses-based vinasse presented higher potential for bioH2 (up to 4545 mL-H2 L-1 d-1) and HLa (up to 4800 mg L-1) production by butyric-type and capnophilic lactic fermentation pathways. Finally, heterolactic fermentation was the main metabolic route established when no pH control was provided (R3), as indicated by the high production of both HLa (up to 4315 mg L-1) and ethanol (1987 mg L-1). Hence, one single substrate (from which one single source of inoculum was originated) offers a wide range of metabolic possibilities to be exploited, providing substantial versatility to the application of anaerobic digestion in sugarcane biorefineries.
Collapse
Affiliation(s)
- Renan Coghi Rogeri
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Felipe Eng
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - André do Vale Borges
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Matheus Neves de Araujo
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | | | - Ariovaldo José da Silva
- School of Agricultural Engineering (FEAGRI), University of Campinas (Unicamp), Av. Cândido Rondon, 501, Barão Geraldo, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
4
|
Hosseinzadeh A, Zhou JL, Altaee A, Li D. Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process. BIORESOURCE TECHNOLOGY 2022; 343:126111. [PMID: 34648964 DOI: 10.1016/j.biortech.2021.126111] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| |
Collapse
|
5
|
Improvement of CO 2 and Acetate Coupling into Lactic Acid by Genetic Manipulation of the Hyperthermophilic Bacterium Thermotoga neapolitana. Microorganisms 2021; 9:microorganisms9081688. [PMID: 34442767 PMCID: PMC8399208 DOI: 10.3390/microorganisms9081688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Capnophilic lactic fermentation (CLF) represents an attractive biotechnological process for biohydrogen production and synthesis of L-lactic acid from acetate and CO2. The present study focuses on a genetic manipulation approach of the Thermotoga neapolitana DSM33003 strain to enhance lactic acid synthesis by the heterologous expression of a thermostable acetyl-CoA synthetase that catalyses the irreversible acetate assimilation. Because of the scarcity of available genetic tools, each transformation step was optimized for T. neapolitana DSM33003 to cope with the specific needs of the host strain. Batch fermentations with and without an external source of acetate revealed a strongly increased lactate production (up to 2.5 g/L) for the recombinant strain compared to wild type. In the engineered bacterium, the assimilation of CO2 into lactic acid was increased 1.7 times but the hydrogen yield was impaired in comparison to the wild type strain. Analysis of fermentation yields revealed an impaired metabolism of hydrogen in the recombinant strain that should be addressed in future studies. These results offer an important prospective for the development of a sustainable approach that combines carbon capture, energy production from renewable source, and the synthesis of high value-added products, which will be addressed in future studies.
Collapse
|
6
|
Biohydrogen-producing from bottom to top? Quali-quantitative characterization of thermophilic fermentative consortia reveals microbial roles in an upflow fixed-film reactor. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Pradhan N, d'Ippolito G, Dipasquale L, Esposito G, Panico A, Lens PNL, Fontana A. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. BIORESOURCE TECHNOLOGY 2021; 332:125127. [PMID: 33873006 DOI: 10.1016/j.biortech.2021.125127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the feasibility of hydrogen (H2) and L-lactic acid production from starch under capnophilic lactic fermentation (CLF) conditions by using Thermotoga neapolitana. Batch experiments were performed in 120 mL serum bottles and a 3 L pH-controlled continuous stirred-tank reactors (CSTR) system with potato and wheat starch as the substrates. A H2 yield of 3.34 (±0.17) and 2.79 (±0.17) mol H2/mol of glucose eq. was achieved with, respectively, potato and wheat starch. In the presence of CO2, L-lactic acid production by the acetyl-CoA carboxylation was significantly higher for the potato starch (0.88 ± 0.39 mol lactic acid/mol glucose eq.) than wheat starch (0.33 ± 0.11 mol lactic acid/mol glucose eq.). A kinetic model was applied to simulate and predict the T. neapolitana metabolic profile and bioreactor performance under CLF conditions. The CLF-based starch fermentation suggests a new direction to biotransform agri-food waste into biofuels and valuable biochemicals.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Laura Dipasquale
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli "Federico II", Via Claudio 21, 80125 Napoli, Italy.
| | - Antonio Panico
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, 81031 Aversa, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, the Netherlands.
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Biology, University of Napoli "Federico II", Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy.
| |
Collapse
|
8
|
Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C, Manzo E, Fontana A, d’Ippolito G. Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. Int J Mol Sci 2020; 22:ijms22010341. [PMID: 33396970 PMCID: PMC7795431 DOI: 10.3390/ijms22010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
The phylum Thermotogae is composed of a single class (Thermotogae), 4 orders (Thermotogales, Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae, Kosmotogaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera. They have been isolated from extremely hot environments whose characteristics are reflected in the metabolic and phenotypic properties of the Thermotogae species. The metabolic versatility of Thermotogae members leads to a pool of high value-added products with application potentials in many industry fields. The low risk of contamination associated with their extreme culture conditions has made most species of the phylum attractive candidates in biotechnological processes. Almost all members of the phylum, especially those in the order Thermotogales, can produce bio-hydrogen from a variety of simple and complex sugars with yields close to the theoretical Thauer limit of 4 mol H2/mol consumed glucose. Acetate, lactate, and L-alanine are the major organic end products. Thermotagae fermentation processes are influenced by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials of Thermotogae and promote their applications in industry. This article gives an overview of how these operational parameters could impact Thermotogae fermentation in terms of sugar consumption, hydrogen yields, and organic acids production.
Collapse
Affiliation(s)
- Mariamichela Lanzilli
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Nunzia Esercizio
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Marco Vastano
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Carmela Gallo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
- Correspondence: ; Tel.: +39-081-8675096
| |
Collapse
|
9
|
Kinetic models of biological hydrogen production by Enterobacter aerogenes. Biotechnol Lett 2020; 43:435-443. [PMID: 33230595 DOI: 10.1007/s10529-020-03051-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Dark fermentative hydrogen production from glucose by Enterobacter aerogenes was studied. The kinetic models of modified Gompertz and Logistic were employed to investigate the progress of hydrogen production. The predicted maximum hydrogen production (Hmax) by modified Gompertz and Logistic was 11.92 and 11.28 mL, respectively. The kinetic models of modified Gompertz, Logistic, and Richards were used to study biomass growth in batch experiments. The maximum biomass growth (Xmax) by models of modified Gompertz, Logistic, and Richards was 4.90, 4.85, and 4.95 (g L-1), respectively. The modified Gompertz was applied to simulate the consumption of glucose where the maximum degraded glucose (Smax) was obtained 19.77 g L-1. The correlation coefficients of all the models were over 0.97, which illustrate that the models fit the data very well. However, the modified Gompertz model presents higher R2 and lower RSS and is more appropriate than the other models.
Collapse
|
10
|
d'Ippolito G, Landi S, Esercizio N, Lanzilli M, Vastano M, Dipasquale L, Pradhan N, Fontana A. CO 2-Induced Transcriptional Reorganization: Molecular Basis of Capnophillic Lactic Fermentation in Thermotoga neapolitana. Front Microbiol 2020; 11:171. [PMID: 32132982 PMCID: PMC7039931 DOI: 10.3389/fmicb.2020.00171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 11/25/2022] Open
Abstract
Capnophilic lactic fermentation (CLF) is a novel anaplerotic pathway able to convert sugars to lactic acid (LA) and hydrogen using CO2 as carbon enhancer in the hyperthermophilic bacterium Thermotoga neapolitana. In order to give further insights into CLF metabolic networks, we investigated the transcriptional modification induced by CO2 using a RNA-seq approach. Transcriptomic analysis revealed 1601 differentially expressed genes (DEGs) in an enriched CO2 atmosphere over a total of 1938 genes of the T. neapolitana genome. Transcription of PFOR and LDH genes belonging to the CLF pathway was up-regulated by CO2 together with 6-phosphogluconolactonase (6PGL) and 6-phosphogluconate dehydratase (EDD) of the Entner–Doudoroff (ED) pathway. The transcriptomic study also revealed up-regulation of genes coding for the flavin-based enzymes NADH-dependent reduced ferredoxin:NADP oxidoreductase (NFN) and NAD-ferredoxin oxidoreductase (RNF) that control supply of reduced ferredoxin and NADH and allow energy conservation-based sodium translocation through the cell membrane. These results support the hypothesis that CO2 induces rearrangement of the central carbon metabolism together with activation of mechanisms that increase availability of the reducing equivalents that are necessary to sustain CLF. In this view, this study reports a first rationale of the molecular basis of CLF in T. neapolitana and provides a list of target genes for the biotechnological implementation of this process.
Collapse
Affiliation(s)
- Giuliana d'Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Simone Landi
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Nunzia Esercizio
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Mariamichella Lanzilli
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Marco Vastano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Laura Dipasquale
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Nirakar Pradhan
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Italian National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
11
|
Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The industrial production of lactic acid (LA) is mainly based on bacterial fermentation. This process can result in enantiopure or racemic mixture according to the producing organism. Between the enantiomers, L-lactic acid shows superior market value. Recently, we reported a novel anaplerotic pathway called capnophilic lactic fermentation (CLF) that produces a high concentration of LA by fermentation of sugar in the anaerobic thermophilic bacterium Thermotoga neapolitana. The aim of this work was the identification of the enantiomeric characterization of the LA produced by T. neapolitana and identification of the lactate dehydrogenase in T. neapolitana (TnLDH) and related bacteria of the order Thermotogales. Chemical derivatization and GC/MS analysis were applied to define the stereochemistry of LA from T. neapolitana. A bioinformatics study on TnLDH was carried out for the characterization of the enzyme. Chemical analysis showed a 95.2% enantiomeric excess of L-LA produced by T. neapolitana. A phylogenetic approach clearly clustered the TnLDH together with the L-LDH from lactic acid bacteria. We report for the first time that T. neapolitana is able to produce almost enantiopure L-lactic acid. The result was confirmed by bioinformatics analysis on TnLDH, which is a member of the L-LDH sub-family.
Collapse
|
12
|
Luongo V, Palma A, Rene ER, Fontana A, Pirozzi F, Esposito G, Lens PNL. Lactic acid recovery from a model of Thermotoga neapolitana fermentation broth using ion exchange resins in batch and fixed-bed reactors. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1520727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vincenzo Luongo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Naples, Italy
| | - Angelo Palma
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| | - Eldon R. Rene
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| | - Angelo Fontana
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Piet N. L. Lens
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
13
|
Dipasquale L, Pradhan N, d’Ippolito G, Fontana A. Potential of Hydrogen Fermentative Pathways in Marine Thermophilic Bacteria: Dark Fermentation and Capnophilic Lactic Fermentation in Thermotoga and Pseudothermotoga Species. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Adsorption Behaviour of Lactic Acid on Granular Activated Carbon and Anionic Resins: Thermodynamics, Isotherms and Kinetic Studies. ENERGIES 2017. [DOI: 10.3390/en10050665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|