1
|
Tian L, Jin L, Chen M, Fu D, Zheng S, Wang Y, Xiong J. Highly selective copper recovery from industrial wastewater via electric field-enhanced ultrafiltration assisted with a picolyl-modified polyelectrolyte. WATER RESEARCH 2025; 274:123090. [PMID: 39798530 DOI: 10.1016/j.watres.2025.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II). The captured Cu(II) was subsequently recovered through electrolysis, demonstrating a sustainable approach for both Cu recovery and PPEI recycling. The synthesis and stability of PPEI were confirmed through infrared spectroscopy, particle size analysis, and dialysis validation, ensuring its reliability in practical applications. The incorporation of picolyl groups onto PPEI enhances its selectivity for Cu(II) via coordination with two amines and four pyridyl groups per copper ion. Under acidic conditions, the maximum loading ratio of copper to PPEI is 1:4 with loading capacity of 119.4 mg/g, which increases to 1.5:4 (i.e., 179.1 mg/g) under neutral to alkaline conditions due to the deprotonation of excess amines. PPEI effectively removes Cu(II) from solutions under various harsh conditions at the loading ratio of 4, maintaining 92-98 % removal efficiency in the presence of high salt concentrations (up to 1 M NaCl) and pH as low as 1, and approximately 85 % removal in solutions with competing metal ions at concentrations up to 50 times higher than Cu(II). Scanning electron microscopy and membrane flux changes indicated that the application of a positive electric field significantly reduces membrane fouling and enhances Cu(II) selectivity. The application of a +0.2 V voltage to the membrane side reduced the flux decline rate by 58 %, significantly improving membrane performance while maintaining a Cu(II) removal efficiency of over 95 %. Electrolysis optimized at a current density of ≤0.004 A/cm2 achieved an 80 % copper recovery while allowing PPEI to be released for recycling. Tests conducted using two types of real industrial wastewater demonstrated a copper removal rate of ∼95 %, with a recovery rate of ∼80 %. This study provides a novel and highly selective approach for the efficient recovery of valuable metals from industrial wastewaters.
Collapse
Affiliation(s)
- Liang Tian
- School of Civil Engineering, Southeast University, Nanjing 210096, PR China
| | - Lei Jin
- School of Civil Engineering, Southeast University, Nanjing 210096, PR China
| | - Ming Chen
- School of Civil Engineering, Southeast University, Nanjing 210096, PR China.
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 210096, PR China
| | - Saina Zheng
- School of Civil Engineering, Southeast University, Nanjing 210096, PR China
| | - Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jianglei Xiong
- China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China
| |
Collapse
|
2
|
Jia TZ, Feng R, Cui C, Chen Q, Cseri L, Zhou RF, Szekely G, Cao XL, Sun SP. Conductive nanofiltration membranes via in situ PEDOT-polymerization for electro-assisted membrane fouling mitigation. WATER RESEARCH 2024; 252:121251. [PMID: 38324983 DOI: 10.1016/j.watres.2024.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT. This interwoven structure integrates with the polyamide network to establish a stable selective layer, yielding a remarkable 90 % increase in permeability to 20.4 L m-2 h-1 bar-1. Leveraging the conductivity conferred by PEDOT doping, an electro-assisted cleaning strategy is devised, rapidly restoring the flux to 98.3 % within 5 min, outperforming the 30-minute pure water cleaning approach. Through simulations in an 8040 spiral-wound module and the utilization of the permeated salt solution for cleaning, the electro-assisted cleaning strategy emerges as an eco-friendly solution, significantly reducing water consumption and incurring only a marginal electricity cost of 0.055 $ per day. This work presents an innovative avenue for constructing conductive membranes and introduces an efficient and cost-effective electro-assisted cleaning strategy to effectively combat membrane fouling.
Collapse
Affiliation(s)
- Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ru Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chun Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom
| | - Rong-Fei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China
| | - Gyorgy Szekely
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom; Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China.
| |
Collapse
|
3
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
5
|
Singh SK, Maiti A, Pandey A, Jain N, Sharma C. Fouling limitations of osmotic pressure‐driven processes and its remedial strategies: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Aaditya Pandey
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Nishant Jain
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhaya Sharma
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| |
Collapse
|
6
|
Nayak V, Mannekote Shivanna J, Ramu S, Radoor S, Balakrishna RG. Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review. ACS OMEGA 2022; 7:43346-43363. [PMID: 36506161 PMCID: PMC9730468 DOI: 10.1021/acsomega.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.
Collapse
Affiliation(s)
- Vignesh Nayak
- Institute
of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice-532 10, Czech Republic
| | - Jyothi Mannekote Shivanna
- Department
of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru 260083, Karnataka, India
| | - Shwetharani Ramu
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sabarish Radoor
- Department
of Mechanical and Process Engineering, The Sirindhorn International
Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - R. Geetha Balakrishna
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
7
|
Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Liu S, Song W, Meng M, Xie M, She Q, Zhao P, Wang X. Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154048. [PMID: 35202696 DOI: 10.1016/j.scitotenv.2022.154048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.
Collapse
Affiliation(s)
- Shuyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Manli Meng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
9
|
Ju J, Choi Y, Lee S, Park CG, Hwang T, Jung N. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems. MEMBRANES 2022; 12:membranes12040372. [PMID: 35448343 PMCID: PMC9024728 DOI: 10.3390/membranes12040372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022]
Abstract
With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes is membrane fouling and channel blockage, which lead to a decrease in the power density. Thus, this study aims to improve our understanding of SGP generation by using RED by investigating the effect of pretreatment on the RED performance. Experiments were conducted by using a laboratory-scale experimental setup for RED. The low-salinity and high-salinity feed solutions were brackish water reverse osmosis (BWRO) brine from a wastewater reclamation plant, and a NaCl solution simulating seawater desalination brine. Several pretreatments were applied to the RED process, such as cartridge filter (CF), microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), activated filter media (AFM), and granular activated carbon (GAC). The results indicate that the open-circuit voltage (OCV) and the power density were similar, except for in the NF pretreatment, which removed the dissolved ions to increase the net SGP. However, the pressure in the RED stack was significantly affected by the pretreatment types. The excitation–emission matrix (EEM) fluorescence spectroscopy and the parallel factor analysis (PARAFAC) quantified the organic compounds that are related to the stack pressure. These results suggest that the removal of both colloidal and organic matters by pretreatments is crucial for improving the RED performance by reducing the pressure that is increased in the RED stack.
Collapse
Affiliation(s)
- Jaehyun Ju
- Environmental Technology Division Water Environment Center, Korea Testing Laboratory, 87, Digital-ro 26-gil, Guro-gu, Seoul 08389, Korea; (J.J.); (C.-g.P.)
| | - Yongjun Choi
- School of Civil and Environmental Engineering, Kookmin University, Seoul 02707, Korea;
| | - Sangho Lee
- School of Civil and Environmental Engineering, Kookmin University, Seoul 02707, Korea;
- Correspondence: ; Tel.: +82-2-910-4529
| | - Chan-gyu Park
- Environmental Technology Division Water Environment Center, Korea Testing Laboratory, 87, Digital-ro 26-gil, Guro-gu, Seoul 08389, Korea; (J.J.); (C.-g.P.)
| | - Taemun Hwang
- Korea Institute of Civil Engineering and Building Technology, 283, Goyangdae-ro, Ilsanseo-gu, Goyang-si 10223, Korea;
| | - Namjo Jung
- Korea Institute of Energy Research, 200, Haemajihaean-ro, Gujwa-eup, Jeju-si 63357, Korea;
| |
Collapse
|
10
|
Mir N, Bicer Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112496. [PMID: 33839606 DOI: 10.1016/j.jenvman.2021.112496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing demand for clean water as the population of the earth is exponentially increasing. Many countries are facing water shortage problems, which are bound to become more prevalent in upcoming years. Therefore, it is necessary to investigate sustainable methods to produce clean water for drinking, irrigation, agriculture and domestic use. Electrodialysis uses electricity and specialized membranes to separate ionic substances from water. This practice can be used for desalination and wastewater treatment. To make the process more sustainable, electrodialysis can be coupled with renewable sources of energy such as solar and wind power. Photo-electrodialysis and photovoltaic-electrodialysis are two methods commonly used to couple solar energy with the electrodialysis process. However, these processes are dependent on the availability of sunlight and wind as weather conditions and the positioning of the sun vary by time. Electrodialysis is more favourable for brackish water desalination instead of seawater desalination as it has a lower energy requirement. Desalinating brackish water (1000-5000 ppm) has an energy requirement in the range of 0.4-4 kWh/m3. This review paper summarizes the fundamental concepts of electrodialysis technology and its integration with renewable energy sources such as photo electrodialysis, photovoltaic assisted electrodialysis, reversible electrodialysis/electrodialysis and wind energy-driven electrodialysis. Some aspects that have been considered are the freshwater capacity, specific energy and costs of the hybrid systems.
Collapse
Affiliation(s)
- Namra Mir
- Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar.
| | - Yusuf Bicer
- Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
11
|
Shi Y, Zhang M, Zhang H, Yang F, Tang CY, Dong Y. Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. WATER RESEARCH 2021; 189:116666. [PMID: 33302146 DOI: 10.1016/j.watres.2020.116666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
With the goal of zero-liquid discharge and green energy harvest, extraction of abundant green energy from saline water via pressure retarded osmosis (PRO) technology is a promising but challenging issue for water treatment technologies to achieve water and energy sustainability. Development of high performance PRO membranes has received increased concerns yet still under controversy in practical applications. In this review, a comprehensive and up-to-date discussion of some key historical developments is first introduced covering the major advances of PRO engineering applications and novel membranes especially made in recent years. Then the critical performance indicators of PRO membranes including water flux and power density are briefly discussed. Subsequently, sufficient discussion on four performance limiting factors in PRO membrane and process is presented including concentration polarization, reverse solute diffusion, membrane fouling and mechanical stability. To fully address these issues, an updated insight is provided into recent major progresses on advanced fabrication and modification techniques of novel PRO membranes featuring enhanced performance with different configurations and materials, which are also reviewed in detail based on the viewpoint of design rationales. Afterwards, antifouling strategies and engineering applications are critically introduced. Finally, conclusions and future perspective of PRO membrane for practical operation are briefly discussed.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Lee C, Nguyen TT, Adha RS, Shon HK, Kim IS. Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system. WATER RESEARCH 2020; 185:116154. [PMID: 32823194 DOI: 10.1016/j.watres.2020.116154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The forward osmosis-reverse osmosis (FO-RO) hybrid process has been extensively researched as part of attempts to reduce the high energy consumption of conventional seawater reverse osmosis in recent years. FO operating conditions play a substantial role in the hybrid process, dictating not only the performance of the entire system but also the propensity for fouling, which deteriorates performance in long-term field operations. Therefore, determining the optimal FO operating conditions with regard to membrane fouling may promote sustainable operation through efficient fouling control. This study thus evaluated the influence of each hydrodynamic operating condition (feed flowrate, draw flowrate, and hydraulic pressure difference) and their synergistic effects on fouling propensity in a pilot-scale FO operation under seawater and municipal wastewater conditions. Fouling-induced variation in water flux, channel pressure drop, diluted concentration, and the resulting specific energy consumption (SEC) were comparatively analyzed and utilized to project performance variation in a full-scale FO-RO system. Fouling-induced performance reduction significantly varied depending on hydrodynamic operating conditions and the resultant fouling propensity during 15 days of continuous operation. A high feed flowrate demonstrated a clear ability to mitigate fouling-induced performance deterioration in all conditions. A high draw flowrate turned out to be detrimental for fouling propensity since its high reverse solute flux accelerated fouling growth. Applying additional hydraulic pressure during FO operation caused a faster reduction of water flux, and thus feed recovery and water production; however, these drawbacks could be compensated for by a 10% reduction in the required FO membrane area and an additional reduction in RO SEC.
Collapse
Affiliation(s)
- Chulmin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Rusnang Syamsul Adha
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW2007, Australia
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdanwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
13
|
Meng M, Liu S, Wang X. Pressure retarded osmosis coupled with activated sludge process for wastewater treatment: Performance and fouling behaviors. BIORESOURCE TECHNOLOGY 2020; 307:123224. [PMID: 32224427 DOI: 10.1016/j.biortech.2020.123224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
A novel hybrid technology integrating pressure retarded osmosis with activated sludge process (denoted as PRO-MBR) was proposed in this study for wastewater treatment. Here, performance and fouling behaviors of PRO-MBR were investigated. Excellent contaminants removal and power production were simultaneously achieved in the PRO-MBR. A significant drop of water flux in the PRO-MBR was mainly due to the severe fouling of the support layer in forward osmosis (FO) membrane including internal fouling and external fouling. Although the external fouling was identified to be the major type of fouling, the internal fouling dominated the overall decline of water flux. In addition, organic foulants and biofoulants were the dominant foulants for the external fouling while inorganic foulants were equal to organic foulants and biofoulants for the internal fouling. According to the variations of water flux in the PRO-MBR, the development of support layer fouling was divided into three stages.
Collapse
Affiliation(s)
- Manli Meng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Thin film composite on fluorinated thermally rearranged polymer nanofibrous membrane achieves power density of 87 W m−2 in pressure retarded osmosis, improving economics of osmotic heat engine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Gao H, Chen W, Xu C, Liu S, Tong X, Chen Y. Two-Dimensional Ti 3C 2T x MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2931-2940. [PMID: 32048835 DOI: 10.1021/acs.est.9b05100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osmotic power has emerged as one of the promising candidates for clean and renewable energy. However, the advancement of present osmotic power-harvesting technologies, specifically pressure-retarded osmosis (PRO) in this work, is hindered by the unsatisfactory membrane transport properties. Herein, we demonstrate the freestanding transition-metal carbides and graphene oxide hybrid membranes as high-performance PRO membranes. Due to the elimination of internal concentration polarization, the freestanding hybrid membrane can achieve a record-high power density up to approximately 56.4 W m-2 with 2.0 M NaCl as the draw solution and river water (0.017 M) as the feed water at an applied hydraulic pressure difference of 9.66 bar. In addition, the hybrid membranes exhibit enhanced antifouling potential and antibacterial activity. The facile fabrication of the hybrid membranes shed light on a new membrane development platform for the highly anticipated osmotic power-harvesting technologies.
Collapse
Affiliation(s)
- Haiping Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chunyan Xu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Su Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Mei Y, Li X, Yao Z, Qing W, Fane AG, Tang CY. Simulation of an energy self-sufficient electrodialysis desalination stack for salt removal efficiency and fresh water recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Liu Y, Liu C, Fu X, Lin O, Wang Z, Wang C, Zhang C. Armor polyamide reverse osmosis membrane with POSS ‘armors’ through two-step interfacial polymerization for high anti-chlorine and anti-bacteria performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C. Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Yang T, Wan CF, Xiong JY, Chung TS. Pre-treatment of wastewater retentate to mitigate fouling on the pressure retarded osmosis (PRO) process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Performance analysis of plate-and-frame forward osmosis membrane elements and implications for scale-up design. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
She Q, Zhang L, Wang R, Krantz WB, Fane AG. Pressure-retarded osmosis with wastewater concentrate feed: Fouling process considerations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li M, Feng Y, Wang K, Yong WF, Yu L, Chung TS. Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM 2.5 with Repetitive Usage Capability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10041-10049. [PMID: 28753306 DOI: 10.1021/acs.est.7b01494] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM2.5. The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
Collapse
Affiliation(s)
- Manqing Li
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Yingnan Feng
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Kaiyu Wang
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Wai Fen Yong
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Liya Yu
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering and ‡Department of Civil & Environmental Engineering, National University of Singapore , Singapore 117585, Singapore
| |
Collapse
|
27
|
Han G, Cheng ZL, Chung TS. Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yip NY, Brogioli D, Hamelers HVM, Nijmeijer K. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12072-12094. [PMID: 27718544 DOI: 10.1021/acs.est.6b03448] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.
Collapse
Affiliation(s)
- Ngai Yin Yip
- Department of Earth and Environmental Engineering, Columbia University, New York , New York 10027-6623, United States
| | - Doriano Brogioli
- Energiespeicher- und Energiewandlersysteme, Universität Bremen , Wiener Straße 12, 28359 Bremen, Germany
| | - Hubertus V M Hamelers
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Kitty Nijmeijer
- Membrane Materials & Processes, Department of Chemical Engineering & Chemistry, Eindhoven University of Technology , PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|