1
|
Geng R, Cheng Y, Jiang H, Liu S, Qian R, An B, Tang X, Chen H. Multi-stage anoxic/oxic sequencing batch reactor realizes shortcut nitrogen removal for anaerobically co-digested liquor of municipal sludge and urban organic wastes. ENVIRONMENTAL TECHNOLOGY 2025; 46:2318-2330. [PMID: 39556444 DOI: 10.1080/09593330.2024.2428835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Nitrogen removal from the combined anaerobic digestion dehydration liquor (CADDL) of municipal sludge and urban organic wastes is challenging due to high ammonium concentrations, low C/N ratio, and poor biodegradability. This study proposes a multi-stage anoxic/oxic (A/O) sequencing batch reactor with step feeding to realize partial nitrification and denitrification for shortcut nitrogen removal from the CADDL. We investigated the effects of external carbon source (acetate), dissolved oxygen (DO), A/O duration ratio, and A/O stage number on biological nitrogen removal. Moreover, we assessed the microbial community structure and nitrogen removal pathway. The results showed that the C/N consumption ratio for nitrite reduction to dinitrogen was 3.0 mg COD/mg N, and denitrifying bacteria yielded about 0.43. The optimal dosage of acetate was 2.2 mg COD/mg N. High DO concentration (1.5∼3.0 mg/L) in the aerobic stage improved the ammonia-oxidizing bacteria activity and nitrogen removal rather than worsening the nitritation. A high A/O duration ratio (50 min/60 min) was conducive to complete denitrification of nitrite. The three-stage A/O had an excellent nitrogen removal performance. Under optimal conditions, the nitrite accumulation ratio of nitritation and the total inorganic nitrogen removal reached 100% and 90.1%, respectively. The dominant ammonia-oxidizing bacteria was the genus Nitrosomonas (0.76% abundance), and the dominant denitrifying bacteria was Thauera (0.24% abundance). The nitrite-oxidizing bacteria were not detected, confirming that the biological nitrogen removal pathway was partial nitrification and denitrification. These findings provide a feasible option for the low-carbon nitrogen removal treatment for the CADDL of municipal sludge and urban organic wastes.
Collapse
Affiliation(s)
- Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Yong Cheng
- Yellow river engineering consulting Co., LTD, Zhengzhou, People's Republic of China
| | - Haixin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Shiting Liu
- Sichuan Environmental Protection Industry Group Co., LTD, Chengdu, People's Republic of China
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Ruibo Qian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Baihong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xianchun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wen R, Deng J, Yang H, Li YY, Cheng H, Liu J. A chemically enhanced primary treatment and anammox-based process for sustainable municipal wastewater treatment: The advantage and application prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124406. [PMID: 39914215 DOI: 10.1016/j.jenvman.2025.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Low-carbon nitrogen removal, bioenergy production, and phosphorus recovery are key goals for sustainable municipal wastewater treatment. Traditional activated sludge processes face an energy demand conflict. Anaerobic ammonium oxidation (Anammox) offers a solution to this issue, with the A-B process providing a sustainable approach. Stable and cost-effective nitrite supply for mainstream anammox has gained attention, while the interactions between A-B stage processes are also crucial. This paper reviews the benefits and challenges of mainstream anammox, bioenergy, and phosphorus recovery. A combined process of chemically enhanced primary treatment, partial denitrification and anammox is identified as effective for sustainable treatment. Additionally, the stable nitrite supply from the sidestream partial nitrification provides a 54% nitrogen removal contribution to the mainstream anammox. Anaerobic digestion with sulfate reduction is proposed as an efficient method for simultaneous bioenergy and phosphorus recovery from iron-enhanced primary sludge. The recycling of iron and sulfate reduces excess sludge and cuts costs. A novel wastewater treatment scheme, supported by a mass balance analysis, is presented; the proposed process is capable of recovering >50% of the carbon and phosphorus, while reduced 40% dosing of Fe and S chemicals, reducing the cost of chemical dosing and treatment of the digestate while meeting the high-quality effluent. The paper also explores the potential for transitioning from conventional activated sludge processes and suggests directions for future research.
Collapse
Affiliation(s)
- Ruolan Wen
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
3
|
Luo E, Ouyang J, Zhang X, Lu Q, Wei D, Wang Y, Cha Z, Ye C, Li CY, Wei L. Study on the enhancement of low carbon-to-nitrogen ratio urban wastewater pollutant removal efficiency by adding sulfur electron acceptors. PLoS One 2024; 19:e0310222. [PMID: 39446715 PMCID: PMC11500869 DOI: 10.1371/journal.pone.0310222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024] Open
Abstract
The effective elimination of nitrogen and phosphorus in urban sewage treatment was always hindered by the deficiency of organic carbon in the low C/N ratio wastewater. To overcome this organic-dependent barrier and investigate community changes after sulfur electron addition. In this study, we conducted a simulated urban wastewater treatment plant (WWTP) bioreactor by using sodium sulfate as an electron acceptor to explore the removal efficiency of characteristic pollutants before and after the addition of sulfur electron acceptor. In the actual operation of 90 days, the removal rate of sulfur electrons' chemical oxygen demand (COD), ammonia nitrogen, and total phosphorus (TP) with sulfur electrons increased to 94.0%, 92.1% and 74%, respectively, compared with before the addition of sulfur electron acceptor. Compared with no added sulfur(phase I), the reactor after adding sulfur electron acceptor(phase II) was demonstrated more robust in nitrogen removal in the case of low C/N influent. the effluent ammonia nitrogen concentration of the aerobic reactor in Pahse II was kept lower than 1.844 mg N / L after day 40 and the overall concentration of total phosphorus in phase II (0.35 mg P/L) was lower than that of phase I(0.76 mg P/L). The microbial community analysis indicates that Rhodanobacter, Bacteroidetes, and Thiobacillus, which were the predominant bacteria in the reactor, may play a crucial role in inorganic nitrogen removal, complex organic degradation, and autotrophic denitrification under the stress of low carbon and nitrogen ratios. This leads to the formation of a distinctive microbial community structure influenced by the sulfur electron receptor and its composition. This study contributes to further development of urban low-carbon-nitrogen ratio wastewater efficient and low-cost wastewater treatment technology.
Collapse
Affiliation(s)
- Erming Luo
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Qian Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yongcheng Wang
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Zhengjiong Cha
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chengwei Ye
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chun ying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Li X, Cai Y, Qiu Q, Wu J, Wang J, Qiu J. Monitoring Ammonium Polyphosphate (APP) Biodegradation by Acinetobacter nosocomialis D-3 Using DAPI. Molecules 2024; 29:2667. [PMID: 38893541 PMCID: PMC11173948 DOI: 10.3390/molecules29112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.
Collapse
Affiliation(s)
- Xiangxiang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yule Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiqing Qiu
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, China
| | - Jiamin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Wang
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, China
| | - Jieqiong Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Tang L, Gao M, Liang S, Wang S, Wang X. Enhanced biological phosphorus removal sustained by aeration-free filamentous microalgal-bacterial granular sludge. WATER RESEARCH 2024; 253:121315. [PMID: 38382289 DOI: 10.1016/j.watres.2024.121315] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.
Collapse
Affiliation(s)
- Liaofan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Dong S, Li X, Wang S, Zhang D, Chen Y, Xiao F, Wang Y. Adsorption-electrochemical mediated precipitation for phosphorus recovery from sludge filter wastewater with a lanthanum-modified cellulose sponge filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165545. [PMID: 37454846 DOI: 10.1016/j.scitotenv.2023.165545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, the sludge filter wastewater is confirmed to investigate the effects of adsorption-electrochemical mediated precipitation (EMP) driven phosphorus recovery on the basis of lanthanum-modified cellulose sponge filter (LCLM) material. The adsorption-EMP method relies on in situ recovery phosphate (P) from the used desorption agent (NaOH-NaCl binary solution) via the formation of Ca5(PO4)3OH all while preserving the alkalinity of the desorption agents which benefited long-term application. The lanthanum content of LCLM was 9.0 mg/g, and the adsorption capacity reached 226.1 ± 15.2 mg P/g La at an equilibrium concentration of 3.9 mg P/L. After adsorption, 55.7 % of P was recovered, and the corresponding alkalinity increased from 1.9 mmol/L to 2.2 mmol/L. Adsorption mechanism analysis revealed that the high lanthanum usage of LCLM was attributed to the synergistic effect of the lattice oxygen of LaO and LaPO4·0.5H2O crystallite formation. Additionally, the Ca5(PO4)3OH was found precipitated in the precipitation in the cathode chamber (P-CC) rather than on the surface/section of cation exchange membrane (CEM) and cathode indicating that the P recovery process was controlled by the saturation of CaP species in the EMP system and the electromigration effect. These findings present a new strategy to promote the effective utilization of rare earth elements for P adsorption and demonstrate the potential application of adsorption-EMP systems in dephosphorization for wastewater treatment.
Collapse
Affiliation(s)
- Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yuchi Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Lu X, Oehmen A, Zhao J, Duan H, Yuan Z, Ye L. Insights on biological phosphorus removal with partial nitrification in single sludge system via sidestream free ammonia and free nitrous acid dosing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165174. [PMID: 37385509 DOI: 10.1016/j.scitotenv.2023.165174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
The sidestream sludge treatment by free ammonium (FA)/free nitrous acid (FNA) dosing was frequently demonstrated to maintain the nitrite pathway for the partial nitrification (PN) process. Nevertheless, the inhibitory effect of FA and FNA would severely influence polyphosphate accumulating organisms (PAOs), destroying the microbe-based phosphorus (P) removal. Therefore, a strategic evaluation was proposed to successfully achieve biological P removal with a partial nitrification process in a single sludge system by sidestream FA and FNA dosing. Through the long-term operation of 500 days, excellent phosphorus, ammonium and total nitrogen removal performance were achieved at 97.5 ± 2.6 %, 99.1 ± 1.0 % and 75.5 ± 0.4 %, respectively. Stable partial nitrification with a nitrite accumulation ratio (NAR) of 94.1 ± 3.4 was attained. The batch tests also reported the robust aerobic phosphorus uptake based on FA and FNA adapted sludge after exposure of FA and FNA, respectively, suggesting the FA and FNA treatment strategy could potentially offer the opportunity for the selection of PAOs, which synchronously have the tolerance to FA and FNA. Microbial community analysis suggested that Accumulibacter, Tetrasphaera, and Comamonadaceae collectively contributed to the phosphorus removal in this system. Summarily, the proposed work presents a novel and feasible strategy to integrate enhanced biological phosphorus removal (EBPR) and short-cut nitrogen cycling and bring the combined mainstream phosphorus removal and partial nitrification process closer to practical application.
Collapse
Affiliation(s)
- Xuanyu Lu
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia; Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jing Zhao
- Sustainable minerals institute, the university of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia; Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Shao S, Sheng M, Ye Y, Wang C, Pan D, Wu X. New perspective on effect of β-cyclodextrin on nitrification-denitrification and denitrification phosphorus removal in biogenic manganese oxides driven moving bed biofilm reactor: Performance evaluation, microbial community and process. BIORESOURCE TECHNOLOGY 2023; 386:129502. [PMID: 37506947 DOI: 10.1016/j.biortech.2023.129502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Effect of β-cyclodextrin (β-CD) on simultaneous removal of NH4+-N, NO3--N, COD, and phosphorus (P) in biogenic manganese oxides (BioMnOx) driven moving bed biofilm reactor (MBBR) was investigated. 58.64% and 86.32%, 79.65% and 98.39%, 62.45% and 97.30%, and 24.80% and 95.90% of TN and COD were removed in phases I-IV, indicating that simultaneous nitrification and denitrification (SND) efficiencies were 75.44%, 83.91%, 72.71%, and 35.83%, respectively. Composition and fluorescence spectral characteristics of extracellular polymeric substance (EPS) were evaluated including the removal kinetics of TN and COD. Metabolic activity of Mn2+, decolorization performance of BioMnOx, and reactive oxygen species (ROS) characteristics were determined in biofilm. Furthermore, intermediate Mn3+ and BioMnOx concentration were analyzed. Finally, the removal process of nitrogen (N) and P was proposed based on characterizations of elemental characterization, electrochemistry, and microbial community. This study provides new insights into the N and P removal mediated by BioMnOx and β-CD.
Collapse
Affiliation(s)
- Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Mengcheng Sheng
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Yingzi Ye
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Chunxiao Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
9
|
Kang D, Yuan Z, Li G, Lee J, Han IL, Wang D, Zheng P, Reid MC, Gu AZ. Toward Integrating EBPR and the Short-Cut Nitrogen Removal Process in a One-Stage System for Treating High-Strength Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13247-13257. [PMID: 37615362 DOI: 10.1021/acs.est.3c03917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.
Collapse
Affiliation(s)
- Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhihang Yuan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| |
Collapse
|
10
|
Deng X, Yuan J, Chen L, Chen H, Wei C, Nielsen PH, Wuertz S, Qiu G. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter. WATER RESEARCH 2023; 235:119906. [PMID: 37004306 DOI: 10.1016/j.watres.2023.119906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Accumulibacter plays a major role in enhanced biological phosphorus removal (EBPR) from wastewater. Although bacteriophages have been shown to represent fatal threats to Ca. Accumulibacter organisms and thus interfere with the stability of the EBPR process, little is known about the ability of different Ca. Accumulibacter strains to resist phage infections. We conducted a systematic analysis of the occurrence and characteristics of clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) systems and prophages in Ca. Accumulibacter lineage members (43 in total, including 10 newly recovered genomes). Results indicate that 28 Ca. Accumulibacter genomes encode CRISPR-Cas systems. They were likely acquired via horizontal gene transfer, conveying a distinct adaptivity to phage predation to different Ca. Accumulibacter members. Major differences in the number of spacers show the unique phage resistance of these members. A comparison of the spacers in closely related Ca. Accumulibacter members from distinct geographical locations indicates that habitat isolation may have resulted in the acquisition of resistance to different phages by different Ca. Accumulibacter. Long-term operation of three laboratory-scale EBPR bioreactors revealed high relative abundances of Ca. Accumulibacter with CRISPSR-Cas systems. Their specific resistance to phages in these reactors was indicated by spacer analysis. Metatranscriptomic analyses showed the activation of the CRISPR-Cas system under both anaerobic and aerobic conditions. Additionally, 133 prophage regions were identified in 43 Ca. Accumulibacter genomes. Twenty-seven of them (in 19 genomes) were potentially active. Major differences in the occurrence of CRISPR-Cas systems and prophages in Ca. Accumulibacter will lead to distinct responses to phage predation. This study represents the first systematic analysis of CRISPR-Cas systems and prophages in the Ca. Accumulibacter lineage, providing new perspectives on the potential impacts of phages on Ca. Accumulibacter and EBPR systems.
Collapse
Affiliation(s)
- Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
11
|
Bian H, Wang M, Han J, Hu X, Xia H, Wang L, Fang C, Shen C, Man YB, Wong MH, Shan S, Zhang J. MgFe-LDH@biochars for removing ammonia nitrogen and phosphorus from biogas slurry: Synthesis routes, composite performance, and adsorption mechanisms. CHEMOSPHERE 2023; 324:138333. [PMID: 36889475 DOI: 10.1016/j.chemosphere.2023.138333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Layered double hydroxide-biochar composites (LDH@BCs) have been developed for ammonia nitrogen (AN) and phosphorus (P) removal from wastewater. Improvement of LDH@BCs was limited due to the lack of comparative evaluation based on LDH@BCs characteristics and synthetic methods and information on the adsorption properties of LDH@BCs for N and P from natural wastewater. In this study, MgFe-LDH@BCs were synthesized by three different co-precipitation procedures. The differences in physicochemical and morphological properties were compared. They were then employed to remove AN and P from biogas slurry. The adsorption performance of the three MgFe-LDH@BCs was compared and evaluated. Different synthesis procedures can significantly affect the physicochemical and morphological characteristics of MgFe-LDH@BCs. The LDH@BC composite fabricated through a novel method (labeled 'MgFe-LDH@BC1') has the largest specific surface area, Mg and Fe content, and excellent magnetic response performance. Moreover, the composite has the best adsorption property of AN and P from biogas slurry (30.0% and 81.8%, respectively). The main reaction mechanisms include memory effect, ion exchange, and co-precipitation. Applying 2% MgFe-LDH@BC1 saturated with AN and P adsorption from biogas slurry as a fertilizer substitute can substantially improve soil fertility and increase plant production by 139.3%. These results indicate that the facile LDH@BC synthesis method is an effective method to overcome the shortcomings of LDH@BC in practical application, and provide a basis for further exploration of the potential application of biochar based fertilizers in agriculture.
Collapse
Affiliation(s)
- Haohao Bian
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Minyan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China; Jiyang College, Zhejiang A&F University, 77 Puyang Road, Zhuji, Zhejiang, 311800, China.
| | - Jialin Han
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Xiaopiao Hu
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Honglei Xia
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Lei Wang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Chaochu Fang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Ming Hung Wong
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
12
|
Wu S, Lv N, Zhou Y, Li X. Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification by a novel Lysinibacillus fusiformis B301. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10850. [PMID: 36889322 DOI: 10.1002/wer.10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification (HN-AD) has received widespread attention in biological treatment of wastewater. This study reported a novel Lysinibacillus fusiformis B301 strain, which effectively removed nitrogenous pollutants via HN-AD in one aerobic reactor with no nitrite accumulated. It exhibited the optimal nitrogen removal efficiency under 30°C, citrate as the carbon source and C/N ratio of 15. The maximum nitrogen removal rates were up to 2.11 mgNH4 + -N/(L·h), 1.62 mgNO3 - -N/(L·h), and 1.41 mgNO2 - -N/(L·h), respectively, when ammonium, nitrate, and nitrite were employed as the only nitrogen source under aerobic conditions. Ammonium nitrogen was preferentially consumed via HN-AD in the coexistence of three nitrogen species, and the removal efficiencies of total nitrogen were up to 94.26%. Nitrogen balance analysis suggested that 83.25% of ammonium was converted to gaseous nitrogen. The HD-AD pathway catalyzed by L. fusiformis B301 followed NH 4 + → N H 2 OH → NO 2 - → NO 3 - → NO 2 - → N 2 , supported by the results of key denitrifying enzymatic activities. PRACTITIONER POINTS: The novel Lysinibacillus fusiformis B301 exhibited the outstanding HN-AD ability. The novel Lysinibacillus fusiformis B301 simultaneously removed multiple nitrogen species. No nitrite accumulated during the HN-AD process. Five key denitrifying enzymes were involved in the HN-AD process. Ammonium nitrogen (83.25%) was converted to gaseous nitrogen by the novel strain.
Collapse
Affiliation(s)
- Shiqi Wu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, China
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Na Lv
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, China
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, China
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, China
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| |
Collapse
|
13
|
Feng Y, Wu L, Zhang Q, Li X, Wang S, Peng Y. Double anammox process in the AOAO process of treating real low C/N sewage: Validation, enhancement, and quantification of the contribution of anammox in the oxic zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157866. [PMID: 35940268 DOI: 10.1016/j.scitotenv.2022.157866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Enhancement of anaerobic ammonium oxidation (anammox) process and enrichment of anammox bacteria in the oxic zone of mainstream sewage treatments are complex. Also, quantification of the anammox contribution for nitrogen removal in the oxic zone is hindered owing to the simultaneous occurrence of anammox and nitrification. An alternating anaerobic/oxic/anoxic/oxic bioreactor whose oxic zone boosted partial nitrification coupling anammox (PN/A) and anoxic zone boosted partial denitrification coupling anammox (PD/A), respectively, was operated to treat real sewage for >380 days. Desirable nitrogen removal (effluent total inorganic nitrogen (TIN) of 4.7 ± 1.9 mg N/L) was obtained from low carbon/nitrogen (3.6 ± 0.5) sewage with ammonium concentration of 52.5 ± 2.2 mg N/L in the influent. Under the condition of dissolved oxygen (DO) of 1.5-3 mg/L, anammox bacteria was still enriched within the aerobic biofilms, with the relative abundance increasing to 8.2 % (day 345) from 0 % (no biomass on day 1), which was higher than the value in the flocculent sludge (0.03 %) (P < 0.001). PN driven by flocculent sludge with high activity of ammonium oxidized bacteria (AOB) ensured sufficient nitrite supply for the anammox process with the existence of continuous DO. During the steady operation period, the maximum anammox contribution in the oxic zone was quantified to be 10.6 % by withdrawing aerobic biofilms from the system.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Partially reduced CeO2/C@CNT with high oxygen vacancy boosting phosphate adsorption as CDI anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
La-doped activated carbon as high-efficiency phosphorus adsorbent: DFT exploration of the adsorption mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Zhang Y, Peng Y, Gao X, Li X. A novel process for anammox pretreatment of municipal wastewater: semi-partial nitrification, biological phosphorus removal and recovery. BIORESOURCE TECHNOLOGY 2022; 360:127585. [PMID: 35798168 DOI: 10.1016/j.biortech.2022.127585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Achieving simultaneous semi-partial nitrification and deep phosphorus removal is a preferred process technology for Anammox pretreatment. In this study, semi-partial nitrification combined with in-situ phosphorus recovery (PNPR) was used to treat municipal wastewater. The SRT conflict between the nitrification and phosphorus removal was resolved by in-situ phosphorus recovery every 20 cycles of Anaerobic/Oxid, and a supernatant with more than 10 times the influent phosphorus concentration was obtained, thus achieving bio-enhanced phosphorus removal and recovery with satisfactory semi-partial-nitrification effluent. Interestingly, the results showed that phosphorus removal and recovery process could improve the activity of AOB. The PNPR system's nitrite accumulation rate (NAR) and phosphorus removal rate (PRR) were more than 90% each, whereas the relative abundance of AOB and PAOs increased from 0.04% to 0.74% and from 0.25% to 0.70%, respectively (P < 0.01). Furthermore, on average, the NO2--Neff/NH4+-Neff value was 1.96, which laid the foundation for the subsequent anammox treatment.
Collapse
Affiliation(s)
- Yinong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
17
|
Sun Y, Gu Y, Xiao S. Adsorption behaviors and mechanisms of Al-Fe dual-decorated biochar adsorbent for phosphate removal from rural wastewater. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| | - Shuying Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Liu F, Worland A, Tang Y, Moustafa H, Hassouna MSED, He Z. Microbial electrochemical ammonia recovery from anaerobic digester centrate and subsequent application to fertilize Arabidopsis thaliana. WATER RESEARCH 2022; 220:118667. [PMID: 35667170 DOI: 10.1016/j.watres.2022.118667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Although ammonia recovery from wastewater can be environmentally friendly and energy efficient compared to the conventional Haber-Bosch process, there is a lack of research on the reuse of the recovered ammonia to exhibit a complete picture of resource recovery. In this study, a microbial electrochemical system (MES) was used to recover ammonia from a mixture of anaerobic digester (AD) centrate and food wastewater at a volume ratio of 3:1. More than 60% of ammonia nitrogen was recovered with energy consumption of 2.7 kWh kg-1 N. The catholyte of the MES, which contained the recovered ammonia, was used to prepare fertilizers to support the growth of a model plant Arabidopsis thaliana. It was observed that A. thaliana grown on the MES generated fertilizer amended with extra potassium, phosphorus, and trace elements showed comparable sizes and an even lower death rate (0%) than the control group (24%) that was added with a commercial fertilizer. RNA-Seq analyses were used to examine A. thaliana genetic responses to the MES generated fertilizers or the commercial counterpart. The comparative study offered metabolic insights into A. thaliana physiologies subject to the recovered nitrogen fertilizers. The results of this study have demonstrated the potential application of using the recovered ammonia from AD centrate as a nitrogen source in fertilizer and identified the necessity of supplementing other nutrient elements.
Collapse
Affiliation(s)
- Fubin Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Alyssa Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Hanan Moustafa
- Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America.
| |
Collapse
|
19
|
Feng Y, Luo S, Zhang Y, Wang S, Peng Y. Enhanced nutrient removal from mainstream sewage via denitrifying dephosphatation, endogenous denitrification and anammox in a novel continuous flow process. BIORESOURCE TECHNOLOGY 2022; 351:127003. [PMID: 35301084 DOI: 10.1016/j.biortech.2022.127003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
It is a challenging subject to realize nitrogen and phosphorus elimination synchronously from limited-carbon sewage through conventional biological processes. Herein, a novel continuous flow anaerobic/oxic/anoxic/oxic (AOA-O) process, which integrated denitrifying dephosphatation, endogenous denitrification and anammox in the anoxic zone, was developed to enhance nutrient elimination from low carbon/nitrogen sewage (3.4 in average). After the long-term operation (280 days), a satisfactory nutrient removal performance (effluent PO43--P: 0.2 mg P/L, total inorganic nitrogen (TIN):8.9 mg N/L) was obtained. Mass balance indicated that anammox contributed to 26.1% TIN removal and denitrifying dephosphatation contributed to 25.6% phosphorus removal, respectively. The cooperation of anammox bacteria retained in biofilms and endogenous denitrifying bacteria in flocculent sludge was responsible for the enhanced nutrient removal in the anoxic zone. Dechloromonas carried out phosphorus uptake both under oxic conditions and anoxic conditions. This study can broaden the application prospect of mainstream anammox.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shaoping Luo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yingxin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
20
|
Zhang T, Liu S, Li H, Ma J, Wang X, Shi H, Wang Z, Zhang F, Niu M, Guo Y. One-pot preparation of amphoteric cellulose polymers for simultaneous recovery of ammonium and dihydrogen phosphate from wastewater and reutilizing as slow-release fertilizer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Yang B, Qin Y, He X, Li H, Ma J. The removal of ammonia nitrogen via heterotrophic assimilation by a novel Paracoccus sp. FDN-02 under anoxic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152236. [PMID: 34896137 DOI: 10.1016/j.scitotenv.2021.152236] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A novel strain FDN-02 was isolated from a sequencing batch biofilm reactor. FDN-02 was identified as Paracoccus sp., and the Genbank Sequence_ID was MW652628. Comparing with the removal efficiency of ammonia nitrogen (NH4+-N) by bacterium FDN-02 under different growth conditions, the optimal initial pH, carbon source, and C/N ratio were 7.0, sucrose, and 16, respectively. The maximum removal efficiency and rate of NH4+-N were respectively 96.2% and 10.06 mg-N/L/h within 8 h under anoxic condition when the concentration of NH4+-N was 44.87 mg/L. Specifically, 71.9% of NH4+-N was utilized by strain FDN-02 through heterotrophic assimilation to synthetize organic nitrogen, and approximately 24.1% of NH4+-N was lost in the form of gaseous nitrogen without the emission of nitrous oxide. Bacterium FDN-02 was also found to be a denitrifying organism, and nitrate nitrogen and nitrite nitrogen of lower concentrations were removed by denitrification after the enlargement of biomass. Further investigation showed that the biomass after the removal of NH4+-N by strain FDN-02 had resource utilization potential, and the contents of proteins and amino acids were 635 and 192.97 mg/g, respectively, especially for the usage as an alternative nutrient source for livestock and organic fertilizers. This study provided a promising environmentally friendly biological treatment method for the removal of NH4+-N in the wastewater.
Collapse
Affiliation(s)
- Biqi Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuyang Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglong He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|