1
|
Wang YB, Tang J, Ran DD, Zhu XM, Zheng SJ, Hong SD, Fu SF, van Loosdrecht MCM, Zeng RJ, Dai K, Zhang F. Deciphering the Dual Roles of an Alginate-Based Biodegradable Flocculant in Anaerobic Fermentation of Waste Activated Sludge: Dewaterability and Degradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083369 DOI: 10.1021/acs.est.4c05971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising ∼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.
Collapse
Affiliation(s)
- Yi-Bo Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Tang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Di Ran
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Mei Zhu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shan-Fei Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
3
|
Zhang B, Tang X, Xu Q, Fan C, Gao Y, Li S, Wang M, Li C. Anionic polyacrylamide alleviates cadmium inhibition on anaerobic digestion of waste activated sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100306. [PMID: 37701857 PMCID: PMC10494310 DOI: 10.1016/j.ese.2023.100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023]
Abstract
The uncontrolled discharge of industrial wastewater leads to a significant cadmium (Cd) accumulation in waste activated sludge (WAS), posing a serious threat to the steady operation of the anaerobic digestion (AD) system in wastewater treatment plants (WWTPs). Therefore, developing a viable approach to cope with the adverse effects of high-concentration Cd on the AD system is urgently required. This study aims to investigate the potential of using anionic polyacrylamide (APAM), a commonly used agent in WWTPs, to mitigate the adverse effects of Cd in a toxic amount (i.e., 5.0 mg per g total suspended solids (TSS)) on AD of WAS. The results showed that the effectiveness of higher APAM on Cd toxicity alleviation was less than that of lower APAM at the studied level (i.e., the effectiveness order was 1.5 mg APAM per g TSS > 3.0 mg APAM per g TSS > 6.0 mg APAM per g TSS). The moderate supplement of APAM (i.e., 1.5 mg per g TSS) recovered the accumulative methane yield from 190.5 ± 3.6 to 228.9 ± 4.1 mL per g volatile solids by promoting solubilization, hydrolysis, and acidification processes related to methane production. The application of APAM also increased the abundance of key microbes in the AD system, especially Methanolinea among methanogens and Caldilineaceae among hydrolyzers. Furthermore, APAM facilitated the key enzyme activities involved in AD processes and reduced reactive oxygen species (induced by Cd) production via adsorption/enmeshment of Cd by APAM. These findings demonstrate the feasibility of using moderate APAM to mitigate Cd toxicity during AD, providing a promising solution for controlling Cd or other heavy metal toxicity in WWTPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuying Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
- College of Mechanical & Electrical Engineering, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
4
|
Su N. Spherical Polyelectrolyte Brushes as Flocculants and Retention Aids in Wet-End Papermaking. Molecules 2023; 28:7984. [PMID: 38138474 PMCID: PMC10745445 DOI: 10.3390/molecules28247984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As the criteria of energy conservation, emission reduction, and environmental protection become more important, and with the development of wet-end papermaking, developing excellent retention aids is of great significance. Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains grafted densely to the surface of core particle have the potential to be novel retention aids in wet-end papermaking not only because of their spherical structure, but also due to controllable grafting density and molecular weight. Such characteristics are crucial in order to design multi-functional retention aids in sophisticated papermaking systems. This review presents some important recent advances with respect to retention aids, including single-component system and dual-component systems. Then, basic theory in papermaking is also briefly reviewed. Based on these advances, it emphatically describes spherical polyelectrolyte brushes, focused on their preparation methods, characterization, conformation, and applications in papermaking. This work is expected to contribute to improve a comprehensive understanding on the composition, properties, and function mechanisms of retention aids, which helps in the further investigation on the design of novel retention aids with excellent performance.
Collapse
Affiliation(s)
- Na Su
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China
| |
Collapse
|
5
|
Zhao H, Pu H, Yang Z. Study on the effect of different additives on the anaerobic digestion of hybrid Pennisetum: Comparison of nano-ZnO, nano-Fe 2O 3 and nano-Al 2O 3. Heliyon 2023; 9:e16313. [PMID: 37260894 PMCID: PMC10227347 DOI: 10.1016/j.heliyon.2023.e16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
The effects of three nanomaterials (ZnO, Al2O3, and Fe2O3) on the wet and dry anaerobic digestion (AD) processes of hybrid Pennisetum were assessed over 33 days, and the microbial communities of dry AD systems were studied. The results demonstrated that biogas production improved by 72.2% and 33.6% when nanoporous Al2O3 (nano-Al2O3) and nano-Fe2O3 were added during dry AD, respectively. However, biogas production decreased by 39.4% with nano-ZnO. Kinetic analysis showed that the three nanomaterials could shorten the lag phase of the AD sludge, while the 16S rRNA gene amplicon sequencing results demonstrated that microbes such as Longilinea and Methanosarcina were enriched in the nano-Al2O3 reactors and methanogenic communities community such as Methanobacterium sp., Methanobrevibacter sp., and Methanothrix sp., which were enriched in the nano-Al2O3 and nano-Fe2O3 reactors. However, the microbial community and some methanogenic communities diversity and richness were inhibited by the addition of nano-ZnO.
Collapse
Affiliation(s)
- Hongmei Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiping Pu
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhaorong Yang
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
6
|
Abstract
In recent years, the number of articles reporting the addition of nanomaterials to enhance the process of anaerobic digestion has exponentially increased. The benefits of this addition can be observed from different aspects: an increase in biogas production, enrichment of methane in biogas, elimination of foaming problems, a more stable and robust operation, absence of inhibition problems, etc. In the literature, one of the current focuses of research on this topic is the mechanism responsible for this enhancement. In this sense, several hypotheses have been formulated, with the effect on the redox potential caused by nanoparticles probably being the most accepted, although supplementation with trace materials coming from nanomaterials and the changes in microbial populations have been also highlighted. The types of nanomaterials tested for the improvement of anaerobic digestion is today very diverse, although metallic and, especially, iron-based nanoparticles, are the most frequently used. In this paper, the abovementioned aspects are systematically reviewed. Another challenge that is treated is the lack of works reported in the continuous mode of operation, which hampers the commercial use of nanoparticles in full-scale anaerobic digesters.
Collapse
|
7
|
Li H, Chang F, Li Z, Cui F. The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095371. [PMID: 35564766 PMCID: PMC9100327 DOI: 10.3390/ijerph19095371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Wastewater treatment plants (WWTP) are regarded as the last barriers for the release of incompletely separated and recycled nanoparticles (NPs) into the environment. Despite the importance and ubiquity of microbial extracellular polymeric substances (EPSs) in the complex wastewater matrix, the interaction between NPs and EPSs of anaerobic microflora involved in wastewater treatment and the resultant impact on the biomass metabolomics are unclear. Thus, the impacts of different metal oxide (TiO2, ZnO, and CuO) NPs on functional bacteria in anaerobic granular sludge (AGS) and the possible toxicity mechanisms were investigated. In particular, the binding quality, enhanced resistance mechanism, and chemical fractional contribution of EPSs from AGS against the nanotoxicity of different NPs was assessed. The results showed that CuO NPs caused the most severe inhibition towards acetoclastic and hydrogenotrophic methanogens, followed by ZnO NPs, whereas TiO2 NPs caused no inhibition to methanogenesis. Excessive EPS production, especially the protein-like substances, was an effective strategy for reducing certain NPs’ toxicity by immobilizing NPs away from AGS cells, whereas the metabolism restriction on inner microorganisms of AGS induced by CuO NPs can deteriorate the protective role of EPS, indicating that the roles of EPS may not be amenable to generalizations. Further investigations with lactate dehydrogenase (LDH) and reactive oxygen species (ROS) assays indicated that there are greatly essential differences between the toxicity mechanisms of metal NPs to AGS, which varied depending on the NPs’ type and dosage. In addition, dynamic changes in the responses of EPS content to different NPs can result in a significant shift in methanogenic and acidogenic microbial communities. Thus, the production and composition of EPSs will be a key factor in determining the fate and potential effect of NPs in the complex biological matrix. In conclusion, this study broadens the understanding of the inhibition mechanisms of metal oxide NPs on the AGS process, and the influence of EPSs on the fate, behavior, and toxicity of NPs.
Collapse
Affiliation(s)
- Huiting Li
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Fang Chang
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Zhendong Li
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Correspondence:
| |
Collapse
|
8
|
He D, Zheng S, Xiao J, Ye Y, Liu X, Yin Z, Wang D. Effect of lignin on short-chain fatty acids production from anaerobic fermentation of waste activated sludge. WATER RESEARCH 2022; 212:118082. [PMID: 35123382 DOI: 10.1016/j.watres.2022.118082] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 05/21/2023]
Abstract
Lignin, a biological resource with great potential, can be as high as ∼16% of the total organics in the waste activated sludge (WAS). This work therefore aims to fill the knowledge gap about the effect of lignin on short-chain fatty acids (SCFAs) production from anaerobic fermentation of sludge. Experimental results showed that lignin promoted rather than inhibited SCFAs production. Specifically, the presence of 15% lignin promoted the SCFAs production from 129.1 ± 6.5 to 223.14 ± 7.8 mg COD/g VSS compared with the control, and the proportion of acetic increased by 61.8%, while that of propionic decreased by 44.9%. Mechanism exploration revealed that lignin improved the solubilization of biodegradable substrates due to its hydrophobic characteristics. In addition, lignin enhanced the acidogenesis process, possibly by perfecting the electron transfer chain in the fermentation system, and the quinone structure in lignin may compete electrons with methanogens to inhibit the consumption of SCFAs. Microbiological analysis showed that the abundance of microorganisms related to acidogenesi, especially the acetogenesis, including Proteiniclasticum sp., Acetoanaerobium sp., in the fermenter with lignin increased, which caused the community to shift towards specialized and diverse SCFAs production.
Collapse
Affiliation(s)
- Dandan He
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shilin Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Dongbo Wang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|