1
|
Chang H, Ma Z, Zhao H, Qu D, Liu C, Yan Z, Li R, Qu F, Liang H, Vidic RD. Regulating gypsum scaling-induced wetting in membrane distillation by heterogeneous crystallization: Role of filter media. WATER RESEARCH 2025; 274:123146. [PMID: 39847903 DOI: 10.1016/j.watres.2025.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Mineral scaling and scaling-induced wetting are critical issues in membrane distillation (MD) during treatment of saline wastewaters. Gypsum scaling and scaling-induced wetting in MD were successfully regulated by heterogeneous crystallization with in-line granular filtration in this study. Stable water recovery increased from 32.5 % to more than 52.5 % in one-cycle operation, depending on filter media properties. Because a large mass of crystals were retained or/and adsorbed in the granular filter, the scaling mass on membrane surface was reduced by 41.2 %, 23.1 %, 54.7 % and 78.1 % by filter charged with activated carbon, sand, fiber and activated alumina, respectively. When activated carbon, sand, fiber and activated alumina were used, the final MD fluxes were 1.58, 1.04, 1.96 and 3.43 times that without filter, and permeate conductivity decreased by 43.0 %, 46.8 %, 83.2 % and 81.3 %, respectively. The multi-cycle tests showed that heterogeneous crystallization gradually occurred in the granular filter, thereby promoting seeding-induced crystallization that reduced gypsum scaling and scaling-induced wetting in MD. Excellent anti-scaling and anti-wetting performance of in-line granular filtration was also confirmed for synthetic and real industrial wastewater. The results of this study provide guidance for mineral scaling control in MD to allow resource utilization for saline wastewater.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Zeren Ma
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rui Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Ji Z, Wang J, Yan Z, Liu C, Liu Z, Chang H, Qu F, Liang H. Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment. WATER RESEARCH 2024; 266:122332. [PMID: 39216126 DOI: 10.1016/j.watres.2024.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 μS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 μS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.
Collapse
Affiliation(s)
- Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, 710055, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Song D, Wang L, Sun W, Zhang Y, Xie B, Zhao Y, Wang W, Wang P, Ma J, Cheng W. Tourmaline triggered biofilm transformation: Boosting ultrafiltration efficiency and fouling resistance. WATER RESEARCH 2024; 264:122212. [PMID: 39126743 DOI: 10.1016/j.watres.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Ultralow pressure filtration system, which integrates the dual functionalities of biofilm degradation and membrane filtration, has gained significant attention in water treatment due to its superior contaminant removal efficiency. However, it is a challenge to mitigate membrane biofouling while maintaining the high activity of biofilm. This study presents a novel ceramic-based ultrafiltration membrane functionalized with tourmaline nanoparticles to address this challenge. The incorporation of tourmaline nanoparticles enables the release of nutrient elements and the generation of an electric field, which enhances the biofilm activity on the membrane surface and simultaneously alleviates intrapore biofouling. The tourmaline-modified ceramic membrane (TCM) demonstrated a significant antifouling effect, with a substantial increase in water flux by 60 %. Additionally, the TCM achieved high removal efficiencies for contaminants (48.78 % in TOC, 22.28 % in UV254, and 24.42 % in TN) after 30 days of continuous operation. The fouling resistance by various constituents in natural water was individually analyzed using model compounds. The TCM with improved electronegativity and hydrophilicity exhibited superior resistance to irreversible fouling through increased electrostatic repulsion and reduced adhesion to foulants. Comprehensive characterizations and analyses, including interfacial interaction energies, redox reaction processes, and biofilm evolutions, demonstrated that the TCM can release nutrient elements to facilitate the development of functional microbial community within the biofilm, and generate reactive oxygen species (ROS) on the membrane surface to the degrade contaminants and mitigate membrane biofouling. The electric field generated by tourmaline nanoparticles can promote electron transfer in the Fe(III)/Fe(II) cycle, ensuring a stable and sustainable generation of ROS and bactericidal negative ions. These synergistic functions enhance contaminant removal and reduce irreversible fouling of the TCM. This study provides fundamental insights into the role of tourmaline-modified surfaces in enhancing membrane filtration performance and fouling resistance, inspiring the development of high-performance, anti-fouling membranes.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Weikai Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ying Zhao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Chen R, Xu D, Zhao J, Tang X, Yang H, Liang H. Effects of cations on biofilms in gravity-driven membrane system: Filtration performance and mechanism investigation. WATER RESEARCH 2024; 254:121383. [PMID: 38432002 DOI: 10.1016/j.watres.2024.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The gravity-driven membrane (GDM) system is desirable for energy-efficient water treatment. However, little is known about the influence of cations on biofilm properties and GDM performance. In this study, typical cations (Ca2+ and Na+) were used to reveal the combined fouling behavior and mechanisms. Results showed that Ca2+ improved the stable flux and pollutant removal efficiency, while Na+ adversely affected the flux. Compared with GDM control, the concentration of pollutants was lower in Ca-GDM, as indicated by the low biomass, proteins, and polysaccharides. A heterogeneous and loose biofilm was observed in the Ca-GDM system, with roughness and porosity increasing by 43.06 % and 32.60 %, respectively. However, Na+ induced a homogeneous and dense biofilm, with porosity and roughness respectively reduced by 17.48 % and 22.04 %. The richness of bacterial communities increased in Ca-GDM systems, while it decreased in Na-GDM systems. High adenosine triphosphate (ATP) concentration in Ca-GDM system was consistent with the abundant bacteria and their high biological activity, which was helpful for the efficient removal of pollutants. The abundance of Apicomplexa, Platyhelminthes, Annelida and Nematoda increased after adding Ca2+, which was related to the formation of loose biofilms. Computational simulations indicated that the free volumes of the biofilms in Ca-GDM and Na-GDM were 13.7 and 13.2 nm3, respectively. The addition of cations changed intermolecular forces, Ca2+ induced bridging effects led to large and loose floc particles, while the significant dehydration of hydrated molecules in the Na-GDM caused obvious aggregation. Overall, microbiological characteristics and contaminant molecular interactions were the main reasons for differences in GDM systems.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
5
|
Wu X, Li Y, Su Z, Tian L, Siddique MS, Yu W. Less pressure contributes to gravity-driven membrane ultrafiltration with greater performance: Enhanced driving efficiency and reduced disinfection by-products formation potential. J Environ Sci (China) 2024; 137:407-419. [PMID: 37980026 DOI: 10.1016/j.jes.2023.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 11/20/2023]
Abstract
Gravity-driven membrane (GDM) systems have been well developed previously; however, impacts of driving (i.e., transmembrane) pressure on their performance received little attention, which may influence GDM performance. In this study, we evaluated 4 GDM systems via altering the transmembrane pressure from 50 mbar to 150 mbar with 2 groups, treating surface water in Beijing, China. Results showed that less driving pressure was more favorable. Specifically, compared to groups (150 mbar), groups under a pressure of 50 mbar were found to have greater normalized permeability and lower total resistance. During the whole operation period, the quality of effluents was gradually improved. For example, the removal efficiency of UV254 was significantly improved; particularly, under low driving pressure, the removal efficiency of UV254 in PES GDM system increased by 11.91%, as compared to the corresponding system under high driving pressure. This observation was consistent with the reduction on disinfection by-products (DBPs) formation potential; groups under 50 mbar achieved better DBPs potential control, indicating the advantages of lower driving pressure. Biofilms were analyzed and responsible for these differences, and distinct distributions of bacteria communities of two GDM systems under 50 and 150 mbar may be responsible for various humic-like substances removal efficiency. Overall, GDM systems under less pressure should be considered and expected to provide suggestions on the design of GDM systems in real applications.
Collapse
Affiliation(s)
- Xiaoting Wu
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yufei Li
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Du X, Liang Z, Li J, Qiu Y, Song W, Wang Z, Zhao Z, Zhang W. Electrocoagulation enhanced gravity driven membrane bioreactor for advanced treatment of rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120191. [PMID: 38325286 DOI: 10.1016/j.jenvman.2024.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
The daily discharge of rural sewage in China occupies 30 % of the national wastewater discharge, and developing an energy-efficient, easy to operate, and decentralized rural sewage treatment technology becomes an important task. In this work, a novel rural sewage treatment technology, Electrocoagulation enhanced Gravity-Driven Membrane Bioreactor (EC-GDMBR) was exploited for the rural sewage treatment under long-term operation (160 days). Two EC-GDMBRs with various module structures of ceramic membrane (horizontal module and side module) not only displayed the desirable effluent quality, but also sustained the stable flux (8-13 LMH). The electrocoagulation, electrooxidation, biodegradation, and separation in EC-GDMBRs were able to synergistically remove the particle matter, organic (CODCr effluent <11.6 ± 1.2 mg/L) and nutrients (NH3-N effluent <0.1 mg/L, TN effluent <8.5 mg/L, TP effluent <0.05 mg/L). Besides, the high permeability of ceramic membrane and large porosity of biofilm on its surface improved the sustainability of stable flux during the long-term operation. Moreover, by analyzing bacterial abundance, Extracellular Polymeric Substances, Adenosine Tri-Phosphate and Confocal Laser Scanning Microscopy, a large number of microorganisms grew and accumulated on the carrier, as well as formed the biofilm (23.46-659.9 μm), while Nitrobacteria (1.6-4.1 %) and Nitrate (0.01-0.06 %) exited in the carrier biofilms, promoting the nitrogen removal. Compared with EC-GDMBR with side module of ceramic membrane, EC-GDMBR with horizontal module of ceramic membrane has advantages in flux behavior, organic/nutrient removal, microbial abundance/activity, abundance of nitrogen removal functional bacteria and water permeability of biofilm, because the ceramic membrane of horizontal module can promote the uniform growth of biofilm and improve the uniformity of flow penetration distribution. In general, the findings of this work verify the reliability of EC-GDMBR for the sustainable operation of wastewater treatment and improve its application value of rural sewage treatment.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenhao Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiawan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongkang Qiu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenxiang Zhang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboraroty (Guangzhou), China.
| |
Collapse
|
7
|
Liu M, Lu Q, Yu W. The improvement of heavy metals removal by wood membrane in drinking water treatment: Comparison with polymer membrane and associated mechanism. CHEMOSPHERE 2023; 324:138297. [PMID: 36893869 DOI: 10.1016/j.chemosphere.2023.138297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The application of commercial membranes is limited by the secondary pollution such as the usage of toxic chemicals for the membrane preparation and the disposal of aged membranes. Therefore, the green and environmentally friendly membranes are extremely promising for the sustainable development of membrane filtration in water treatment. In this study, the comparison of wood membrane with the pore size of tens microns (μm) and polymer membrane with the pore size of 0.45 μm was made to study the heavy metals removal in drinking water treatment by gravity-driven membrane (GDM) filtration system, and there was an improvement in the removal of Fe, Cu and Mn by wood membrane. The sponge-like structure of fouling layer for wood membrane made the retention time of heavy metals prolonged in contrast to the cobweb-like structure of polymer membrane. The carboxylic group (-COOH) content of fouling layer for wood membrane was greater than that for polymer membrane. Additionally, the population abundance of heavy metal-capturing microbes on the surface of wood membrane was higher compared with polymer membrane. The wood membrane provides a promising route to producing facile, biodegradable and sustainable membrane as a green alternative to polymer membranes in heavy metal removal from drinking water.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qingxuan Lu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
8
|
Guo J, Zhou M, Zhao M, Li S, Fang Z, Li A, Zhang M. TIGAR deficiency induces caspase-1-dependent trophoblasts pyroptosis through NLRP3-ASC inflammasome. Front Immunol 2023; 14:1114620. [PMID: 37122710 PMCID: PMC10140348 DOI: 10.3389/fimmu.2023.1114620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Gestational diabetes mellitus (GDM), a common complication of pregnancy, is risky for both mother and fetus. Previous studies about TP53-induced glycolysis and apoptosis regulator (TIGAR) focused on the occurrence and development of cancer, cardiovascular disease, and neurological disease, however, it is still unclear whether TIGAR plays a regulatory role in gestational diabetes mellitus (GDM). Methods Utilizing HG exposure, we explored the role of TIGAR in oxidative stress limitation, excessive inflammatory toxicity defense, and pyroptosis prevention. Results TIGAR was up-regulated in vivo and in vitro under HG condition, and loss of TIGAR increased ROS in trophoblast cells which drove a phenotypic switch and hindered the capacity of migration, invasion, and tube formation. This switch depended on the increased activation of NLRP3-ASC-caspase-1 signaling, which caused a distinctive characteristic of pyroptosis, and these findings could finally be reverted by antioxidant treatment (NAC) and receptor block (MCC950). Collectively, trophoblast pyroptosis is an upstream event of TIGAR deficiency-induced inflammation, which is promoted by ROS accumulation through NLRP3-ASC inflammasome. Conclusion Taken together, our results uncovered that, as the upstream event of TIGAR deficiency-induced inflammation, pyroptosis is stimulated by ROS accumulation through NLRP3-ASC inflammasome.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Li
- *Correspondence: Anna Li, ; Meihua Zhang,
| | | |
Collapse
|
9
|
Feng J, Li X, Yang Y, Fan X, Zhou Z, Ren J, Tan X, Li H. Insight into biofouling mechanism in biofiltration-facilitated gravity-driven membrane (GDM) system: Beneficial effects of pre-deposited adsorbents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Chen R, Hu L, Zhang H, Lin D, Wang J, Xu D, Gong W, Liang H. Toward emerging contaminants removal using acclimated activated sludge in the gravity-driven membrane filtration system. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129541. [PMID: 35810515 DOI: 10.1016/j.jhazmat.2022.129541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of emerging contaminants is attracting widespread attention due to its potential threat to aquatic organisms and public health. Gravity-driven membrane (GDM) filtration can effectively eliminate water contamination with pathogenic microorganisms in rural areas while being challenged by various micro-pollutants (MPs). This study investigated the removal and transformation of sulfamethoxazole (SMX) in GDM for the first time, and pre-adding acclimated activated sludge was proposed to improve the removal of MPs. More rapid and higher SMX degradation was observed with pre-adding domestication sludge, and the system had better tolerance to SMX shocks. Besides, in the presence of domesticated sludge, more SMX metabolic pathways and better mineralization rates were obtained, which was related to more SMX-resistant bacteria and easier biodegradable carbon sources in the system. Pre-adding sludge also increased the richness and diversity of bacterial community, which provided higher removal efficiencies of conventional pollutants. Thus, the removal rates of DOC (14.7%), NH4+-N (5.6%) and fluorescent substances were obviously improved compared with the control group. In this study, the crisis of MPs was tackled and the removal of conventional pollutants was enhanced by pre-adding domesticated sludge in GDM, which ensured the water quality in rural areas.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Lin Hu
- CCCC First Highway Consultants Co., Ltd., Xi'an 710075, PR China; Xi'an CCCC Environmental Engineering Co., Ltd., Xi'an 710075, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Lin L, Zhang Y, Yan W, Fan B, Fu Q, Li S. Performance of gravity-driven membrane systems for algal water treatment: Effects of temperature and membrane properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155963. [PMID: 35584755 DOI: 10.1016/j.scitotenv.2022.155963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Gravity-driven membrane (GDM) systems are promising for algal water treatment. However, the algae-bacteria interaction in the biofilm on the membrane, which is highly dependent on temperature and membrane properties, is still unclear. Therefore, this study investigated the effect of temperature on the performance of GDM systems during the filtration of algae-rich water for 50 days using two types of membranes. The results suggested that the combined effect of the microbial growth (controlled by temperature) and organic rejection (related to membrane properties) determined the membrane biofilm structure and its hydraulic resistance. Increasing the temperature from 10 to 35 °C gradually improved the foulant removal by both polyvinylidene fluoride (PVDF200) and polyvinyl chloride (PVC0.01) membranes, corresponding to different microbial activities. The lowest removal observed at 10 °C was attributed to the algal cell rupture and limited bacteria growth. At 25 °C, the stimulated algae population was mainly responsible for nutrient removal, meanwhile the oxygenic environment encouraged the proliferation of heterotrophic bacteria for the organic removal. At a higher temperature of 35 °C, both the nutrient and organic removal were dominated by denitrification, accompanied by a strong increase in biological activity. Although PVDF200 membranes had 10 times higher initial fluxes than PVC0.01 membranes, they obtained comparable final fluxes. Unlike PVDF200 membranes exhibited the highest final flux at 10 °C (3.64 L/m2/h), the PVC0.01 membrane permeability increased in the order: 10 °C (1.58 L/m2/h) < 25 °C (2.20 L/m2/h) < 35 °C (4.00 L/m2/h). This is mainly because the PVDF200 membrane fouling was dominated by microbial biomass, while PVC0.01 membranes with smaller pores and higher hydrophilicity were more sensitive to changes in microbial metabolites. This study links temperature, membrane properties and biofilm physiology, with practical relevance for the hydraulic performance of GDM systems, hopefully leading to their wider application in algal water treatment.
Collapse
Affiliation(s)
- Li Lin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China
| | - Yan Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China.
| | - Wenxin Yan
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, China
| | - Bangjun Fan
- Heilongjiang Airport Management Group Co. LTD, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China.
| | - Shuang Li
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China
| |
Collapse
|
12
|
Bilad MR, Junaeda SR, Khery Y, Nufida BA, Shamsuddin N, Usman A, Violet V. Compaction of a Polymeric Membrane in Ultra-Low-Pressure Water Filtration. Polymers (Basel) 2022; 14:polym14163254. [PMID: 36015511 PMCID: PMC9416213 DOI: 10.3390/polym14163254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced sustainability due to lower energy input, almost no use of chemicals, and minimum operational expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane (GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in the traditional pressure-driven system operating at high transmembrane pressures (ΔPs > 200 kPa), but it is less documented in ultra-low-pressure systems (ΔP < 10 kPa). A simple GDM filtration setup operated under a constant-pressure system was employed to investigate the compaction phenomena in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure stepping test was performed to investigate the occurrence of instantaneous compaction in the ΔP range of 1−10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic was assessed under alternating high and low ΔP and relaxation in between the filtrations. The findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend in clean water permeability at higher ΔPs (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ΔPs of 1 and 10 kPa, respectively). We also found that the intrinsic permeability of the applied polymeric membrane was significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50% loss due to compaction. The compaction was mainly instantaneous, which occurred when the ΔP was changed, whereas only minor changes in permeability occurred over time when operating at a constant ΔP. The compaction was highly reversible and could be restored (i.e., decompaction) through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction could be detected by operating alternating filtrations under ΔPs of 1 and 10 kPa. The overall findings are essential to support emerging GDM filtration applications, in which membrane compaction has been ignored and confounded with membrane fouling. The role of compaction is more prominent for high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction occurred simultaneously.
Collapse
Affiliation(s)
- Muhammad Roil Bilad
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence:
| | - Siti Rahma Junaeda
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Yusran Khery
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Baiq Asma Nufida
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | - Violet Violet
- Faculty of Forestry, Lambung Mangkurat University, Jl. A. Yani KM. 36, Banjarbaru 70714, Indonesia
| |
Collapse
|