1
|
Achouri H, Derguini A, Idres T, Selamoglu Z, Hamadi NB, Jalouli M, Elfalleh W, Bendif H, Badraoui R, Boufahja F, Dellali M. Impact of climate change on the toxicity of bisphenol A in Mytilus galloprovincialis and assessment of phycoremediation using Nannochloropsis salina via a multi-biomarker strategy and modeling. MARINE POLLUTION BULLETIN 2025; 216:118010. [PMID: 40253969 DOI: 10.1016/j.marpolbul.2025.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
In the current study, the mussels Mytilus galloprovincialis, exposed to four varying temperatures (17, 20, 23, and 26 °C), were contaminated with 50 μg/L of bisphenol A both with and without Nannochloropsis salina. The toxicity evaluation is determined by quantifying various biomarkers related to oxidative stress, neurotoxicity, and cellular damage. The key findings indicate that the toxicity of bisphenol A is heightened by rising temperature. The impact of bisphenol A is most evident at 26 °C, leading to excessive production of reactive oxygen species, depletion of non-enzymatic antioxidants, and activation of antioxidant enzymes (catalase and glutathione-S-transferase). The rise in malondialdehyde levels confirms lipid peroxidation caused by bisphenol A and intensified by thermal stress. These findings have been supported by strong molecular interactions between bisphenol A and lectin mytilec apo-form and proximal thread matrix protein 1 from M. galloprovincialis following the computational modeling assay. The incorporation of N. salina as a food additive helped, firstly, to mitigate the stress effects and, secondly, resulted in a noticeable enhancement of oxidative balance and filtration ability, along with decreased lipid peroxidation.
Collapse
Affiliation(s)
- Haifa Achouri
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Assia Derguini
- Microbial Ecology Laboratory, FSNV, Abderrahmane MIRA University, 06017 Bejaïa, Algeria.
| | - Takfarinas Idres
- Laboratory for Livestock Animal Production and Health Research, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Semar, Algiers, Algeria.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Box 5701, Riyadh 11432, Saudi Arabia.
| | - Maroua Jalouli
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Walid Elfalleh
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hamdi Bendif
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Riadh Badraoui
- Department of Biology, University of Ha'il, Ha'il 45851, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mohamed Dellali
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
2
|
Yan R, Ji H, Liu ZC, Ren MQ, Wang S, Yang LM, Cui D. Construction and optimization of low carbon-to-nitrogen ratio-adapted Chlorococcum-Bacteria symbiosis for energy-efficient wastewater remediation. BIORESOURCE TECHNOLOGY 2025; 431:132601. [PMID: 40306340 DOI: 10.1016/j.biortech.2025.132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
This study developed a microalgae-bacteria symbiosis (MBS) system using Chlorococcum robustum AY122332.1 isolated from rare earth tailings wastewater to treat synthetic municipal wastewater. Systematic optimization identified a 1:1 bacteria-microalgae ratio (MBS 1) as optimal, achieving nearly 100 % removal of ammonia and 92.2 ± 0.6 % of chemical oxygen demand. Microbial community analysis identified significant enrichment of nitrogen-transforming consortia in MBS 1, particularly Thauera (7.43 % relative abundance), whose nitrite reductase activity and polyhydroxyalkanoate biosynthesis capacity enhanced simultaneous nitrification-denitrification. The optimized system showed superior stability with an elevated zeta potential (+17.72 mV) driven by protein-rich extracellular polymeric substances production and humic acid accumulation. These biopolymers facilitated microaggregate formation through ligand bridging and hydrophobic interactions, creating redox-stratified microenvironments that supported functional microbial niches. The synergistic interactions in the MBS system enabled efficient nutrient recovery while maintaining ecological resilience under carbon-limited conditions, providing new insights into sustainable wastewater bioremediation processes.
Collapse
Affiliation(s)
- Ru Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Han Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo-Chao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Mei-Qi Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shuai Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Li-Ming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Li X, Lu J, Li M, Qiu S, Ge S. Extracellular polymeric substances in indigenous microalgal-bacterial consortia: advances in characterization techniques and emerging applications. World J Microbiol Biotechnol 2025; 41:144. [PMID: 40289058 DOI: 10.1007/s11274-025-04365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Extracellular polymeric substances (EPS) synthesized by indigenous microalgal-bacterial consortia (IMBC) play multifunctional roles in enhancing wastewater treatment efficiency, nutrient sequestration, and ecological system stability. This comprehensive review critically evaluates state-of-the-art analytical methods for characterizing EPS composition, physicochemical properties, and functional dynamics, including colorimetry, Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). While these methods provide critical insights into EPS structure-function relationships, challenges persist in resolving spatial heterogeneity, real-time secretion dynamics, and molecular-scale interactions within complex IMBC systems. Emerging technologies such as expansion microscopy (ExM), electrochemical impedance spectroscopy (EIS), and integrated multi-omics approaches are highlighted as transformative tools for in situ EPS profiling, offering nanoscale resolution and temporal precision. By synthesizing these innovations, this review proposes a multidisciplinary framework to decode EPS-mediated microbial symbiosis, optimize IMBC performance, and advance applications in sustainable bioremediation, bioenergy, and circular resource recovery.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu, 210094, China
| | - Jiahui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu, 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu, 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu, 210094, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
4
|
Liu Z, Liu W, Zhou Z, Liu G, Li Y, Zhang S, Wang J, Chen L, Xie K. Effect of polypropylene microplastics on the performance of membrane bioreactors in wastewater treatment. ENVIRONMENTAL RESEARCH 2025; 269:120837. [PMID: 39832548 DOI: 10.1016/j.envres.2025.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Membrane bioreactors (MBRs) can effectively remove microplastics (MPs) because of their good rejection performance. However, the influence of MP concentration and particle size on the short-term and long-term operation efficiency of MBRs remains unclear. To address this issue, this study investigated the effects of short-term stress and long-term accumulation of polypropylene microplastics (PP-MPs) with different particle sizes on the operational efficiency of MBRs by running three MBR systems at four concentration stages. Variations in pollutant removal, biological activity, composition of extracellular polymeric substances (EPS), membrane fouling, and microbial communities in the MBRs were systematically investigated. The results showed that low concentrations (0.02 g/L) of PP-MPs stimulated the biological activity in the MBRs in the short term, and small particle size PP-MPs exhibited higher biological toxicity while accelerating membrane fouling. With an increase in time and concentration (0.2-2.0 g/L), PP-MPs showed significant toxic inhibition effects, increasing EPS secretion and accelerating membrane fouling. This effect was more significant for small particle size PP-MPs. In addition, at 0.02 g/L of PP-MPs, the richness and diversity of microbial communities in activated sludge tend to increase, such as the relative abundance of Bacteroidota, while the growth of Proteobacteria is inhibited. The results of this study provide a reference for understanding the effects of short-term stress and long-term accumulation of MPs on MBR efficiency. It provides reference for exploring the influence of MPs with different particle sizes on MBR reactor and the future research direction.
Collapse
Affiliation(s)
- Zongming Liu
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Wenwen Liu
- Department of Emergency, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, 250012, Shandong Province, PR China.
| | - Zhiyong Zhou
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Yinuo Li
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| | - Liang Chen
- Department of Emergency, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, 250012, Shandong Province, PR China.
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China.
| |
Collapse
|
5
|
Zhu X, Xu C, Mao J, Zhang Y, Bai Y. Protonated carbon nitride for rapid photocatalytic sterilization via synergistic oxidative damage and physical destruction. J Environ Sci (China) 2025; 149:188-199. [PMID: 39181633 DOI: 10.1016/j.jes.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 08/27/2024]
Abstract
Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments. Numerous strategies have been devised to facilitate the generation of reactive oxygen species (ROS) within photocatalysts, ultimately leading to the eradication of bacteria. However, the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured, and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited. Herein, graphitic carbon nitride (g-C3N4) is chemically protonated to expose more sharp edges. PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production. Meanwhile, the sharp edges on the protonated g-C3N4 facilitate the physical disruption of cell walls for further promoting oxidative damage. Protonated C3N4 demonstrated superior bactericidal performance than that of pristine g-C3N4, effectively eliminating Escherichia coli within 40 minutes under irradiation. This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunhong Xu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yizhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Chen Q, Gao B, Yang Z, Li Y, Zhai Q, Jia Y, Zhang Q, Gu X, Zuo J, Wang L, Wang T, Zhai P, Yang C, Gong Y. Macroscopically uniform interface layer with Li + conductive channels for high-performance Li metal batteries. Nat Commun 2024; 15:10045. [PMID: 39567503 PMCID: PMC11579391 DOI: 10.1038/s41467-024-54310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The numerous grainboundaries solid electrolyte interface, whether naturally occurring or artificially designed, leads to non-uniform Li metal deposition and consequently results in poor full-battery performance. Herein, a lithium-ion selective transport layer is reported to achieve a highly efficient and dendrite-free lithium metal anode. The layer-by-layer assembled protonated carbon nitride nanosheets present uniform macroscopical structure without grainboundaries. The carbon nitride with ordered pores in basal plane provides high-speed lithium-ion transport channels with low tortuosity. Consequently, the assembled 324 Wh kg-1 pouch cell exhibits 300 stable cycles with a capacity retention of 90.0% and an average Coulombic efficiency up to 99.7%. The ultra-dense Li metal anode makes current collector-free anode possible, achieving high energy density and long cycle life of a 7 Ah cell (506 Wh kg-1, 160 cycles). Thus, it is proved that a macroscopically uniform interface layer with lithium-ion conductive channels could achieve Li metal battery with promising application potential.
Collapse
Affiliation(s)
- Qian Chen
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Binyin Gao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | | | - Yong Li
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai, 200000, China
| | - QingWei Zhai
- Jinan Zhongruitai New Material Technology Co., LTD, Jinan, 250300, China
| | - Yangyu Jia
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qiannan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaokang Gu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jinghan Zuo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Lei Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Tianshuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Pengbo Zhai
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China.
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Cheng Yang
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai, 200000, China.
| | - Yongji Gong
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China.
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
- Center for Micro-Nano Innovation, Beihang University, Beijing, 100029, China.
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou, 310051, China.
| |
Collapse
|
7
|
Xu S, Li R, Liao Y, Bian J, Liu R, Liu H. Biodegradation of organic micropollutants by anoxic denitrification: Roles of extracellular polymeric substance adsorption, enzyme catalysis, and reactive oxygen species oxidation. WATER RESEARCH 2024; 268:122563. [PMID: 39388777 DOI: 10.1016/j.watres.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The control of organic micropollutants (OMPs) in water environments have received significant attention. Denitrification was reported to exhibit good efficiency to remove OMPs, and the mechanisms involved in are too intricate to be well illustrated. In this study, we selected nitrobenzene [NB] and bisphenol A [BPA] as model pollutants and aimed to unravel the mechanisms of Paracoccus Denitrificans in the removal of OMPs, with a specific emphasis on aerobic behavior during denitrification processes. We demonstrated the formation of extracellular superoxide radicals, i.e., extracellular •O2-, using a chemiluminescence probe and found that extracellular polymeric substance adsorption, extracellular •O2-, and microbial assimilation contributed approximately 40 %, 10 %, and 50 % to OMPs removal, respectively. Transcriptome analysis further revealed the high expression and enrichment of several pathways, such as drug metabolism-other enzymes, of which a typical aerobic enzyme of polyphenol oxidase [PPO] participates in the degradation of NB and BPA. Importantly, all the immediate products showed a significant decrease in toxicity during the aerobic activity-related OMPs degradation process based on the proposed degradation pathways. This study demonstrates the formation of extracellular •O2- and the mechanisms of extracellular •O2-- and PPO-mediated OMPs biodegradation, and offers new insights into OMPs control in widely-used denitrification treatment processes.
Collapse
Affiliation(s)
- Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Medlin LK, García-Portela M, Rossignoli AE, Reguera B. A biosensor monitoring approach for toxic algae: Construction of calibration curves to infer cell numbers in field material. HARMFUL ALGAE 2024; 138:102697. [PMID: 39244232 DOI: 10.1016/j.hal.2024.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
A variety of shellfish toxin-producing Harmful Algal Blooms (HABs) occur every year in coastal temperate waters worldwide. These toxic HABs may cause lengthy (months) harvesting bans of mussels and other suspension feeding bivalves exposed to their blooms. To safeguard public health and the shellfish industry, European Union regulations request periodic monitoring of potentially toxic microalgae in seawater and phycotoxins in live bivalve molluscs from shellfish production areas. Monitoring of other toxic microalgae, e.g., fish killers, is based solely on cell counts. Morphological identification and quantification of microalgal cells with light microscopy is time-consuming, requires a good expertise, and accurate identification to species level (e.g., Pseudo-nitzschia species) may require electron microscopy. Toxicity varies among morphologically similar species; there are toxic and non-toxic strains of the same species. Molecular techniques using ribosomal DNA sequences offer a possibility to identify and detect precisely the potentially toxic genus/species. In an earlier project (MIDTAL), specific probes against rRNA sequences of all HAB taxa, known at the time of the project, affecting shellfish areas worldwide were designed, and those affecting Europe were tested and calibrated against rRNA extracts of clonal cultures and field samples. Microarray technology was adopted to relate to cell numbers the fluorescence signal from the reaction of all target species probes spotted in the microarray slides with those present in a single sample extract. The EMERTOX project aimed to develop a more automatic "Lab on a chip" (LOC) technology, including a non- (cell) disruptive water concentration system and biosensors for HAB cells detection. Here, calibration curves are presented against toxic microalgae (cultures and field samples) causing endemic and emerging toxicity events in Galicia (NW Spain) and Portugal. Results here relating cell numbers to electrochemical signals will be used in an early warning biosensor for toxic algae.
Collapse
Affiliation(s)
- Linda K Medlin
- Marine Biological Association of the UK, Citadel Hill, Plymouth, Devon, PL1 2PB, UK.
| | - María García-Portela
- Centro Oceanográfico de Vigo, Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Araceli E Rossignoli
- Centro Oceanográfico de Vigo, Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
9
|
Wang H, Qiu C, Bian S, Zheng L, Chen Y, Song Y, Fang C. The effects of microplastics and nanoplastics on nitrogen removal, extracellular polymeric substances and microbial community in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2023; 379:129001. [PMID: 37011839 DOI: 10.1016/j.biortech.2023.129001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Wastewater treatment plants can be nanoplastics (NPs) and microplastics (MPs) sinks and sources. The effects of NPs and MPs on nitrogen removal and extracellular polymeric substances (EPS) during activated sludge process need further investigation. Results showed that polystyrene NPs (NPS) and 100 mg/L polystyrene MPs (MPS) decreased the specific nitrate reduction rate, resulting in nitrate accumulation. The negative effects on functional genes involved in denitrification (narG, napA, nirS and nosZ) were the main mechanism. NPS stimulated EPS secretion, but MPS inhibited it. NPS and MPS increased the ratio of protein to polysaccharide except for 10 mg/L MPS and changed the secondary structure of protein in EPS, affecting flocculation ability of activated sludge. The changes of microbial abundance in activated sludge could be the main factor to the alterations of EPS and nitrogen removal. These results may facilitate understanding the impacts of NPs and MPs on wastewater treatment processes.
Collapse
Affiliation(s)
- Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Cheng Qiu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Shaochen Bian
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yongmin Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| |
Collapse
|
10
|
Yang L, Vadiveloo A, Chen AJ, Liu WZ, Chen DZ, Gao F. Supplementation of exogenous phytohormones for enhancing the removal of sulfamethoxazole and the simultaneous accumulation of lipid by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2023; 378:129002. [PMID: 37019415 DOI: 10.1016/j.biortech.2023.129002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this study, the phytohormone gibberellins (GAs) were used to enhance sulfamethoxazole (SMX) removal and lipid accumulation in the microalgae Chlorella vulgaris. At the concentration of 50 mg/L GAs, the SMX removal achieved by C. vulgaris was 91.8 % while the lipid productivity of microalga was at 11.05 mg/L d-1, which were much higher than that without GAs (3.5 % for SMX removal and 0.52 mg/L d-1 for lipid productivity). Supplementation of GAs enhanced the expression of antioxidase-related genes in C. vulgaris as a direct response towards the toxicity of SMX. In addition, GAs increased lipid production of C. vulgaris by up-regulating the expression of genes related to carbon cycle of microalgal cells. In summary, exogenous GAs promoted the stress tolerance and lipid accumulation of microalgae at the same time, which is conducive to improving the economic benefits of microalgae-based antibiotics removal as well as biofuel production potential.
Collapse
Affiliation(s)
- Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Ai-Jie Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wen-Zhu Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
11
|
Qv M, Dai D, Liu D, Wu Q, Tang C, Li S, Zhu L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 370:128574. [PMID: 36603749 DOI: 10.1016/j.biortech.2022.128574] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, the microalgae-bacteria symbiosis (ABS) system by co-culturing Chlorella sorokiniana with activated sludge was constructed for pollutants removal, and the according interaction mechanism was investigated. The results showed that the ABS system could almost completely remove ammonia nitrogen, and the removal efficiency of total nitrogen and total phosphorus could accordingly reach up to 65.3 % and 42.6 %. Brevundimonas greatly promoted microalgal biomass growth (maximum chlorophyll-a concentration of 9.4 mg/L), and microalgae contributed to the increase in the abundance of Dokdonella and Thermomonas in ABS system, thus facilitating nitrogen removal. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated a repulsive potential barrier of 561.7 KT, while tryptophan-like proteins and tyrosine-like proteins were key extracellular polymeric substances for the formation of flocs by microalgae and activated sludge. These findings provide an in-depth understanding of interaction mechanism between microalgae and activated sludge for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|