1
|
Luo L, Liu T, He J, Ma J, Yu HQ. Ion-Selective Metathesis Design of Flow-Electrode Capacitive Deionization for Energy-Saving and Anti-Scaling Softening of Brackish Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13120-13130. [PMID: 38985512 DOI: 10.1021/acs.est.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
While flow-electrode capacitive deionization (FCDI) is recognized as an attractive desalination technology, its practical implementation has been hindered by the ease of scaling and energy-intensive nature of the single-cell FCDI system, particularly when treating brackish water with elevated levels of naturally coexisting SO42- and Ca2+. To overcome these obstacles, we propose and design an innovative ion-selective metathesis FCDI (ISM-FCDI) system, consisting of a two-stage tailored cell design. Results indicate that the specific energy consumption per unit volume of water for the ISM-FCDI is lower (by up to ∼50%) than that of a conventional single-stage FCDI due to the parallel circuit structure of the ISM-FCDI. Additionally, the ISM-FCDI benefits from a conspicuous disparity in the selective removal of ions at each stage. The separate storage of Ca2+ and SO42- by the metathesis process in the ISM-FCDI (46.25% Ca2+, 14.25% SO42- in electrode 1 and 4.75% Ca2+, 35.25% SO42- in electrode 2) can effectively prevent scaling. Furthermore, configuration-performance analysis on the ion-selective migration suggests that the properties of the ion exchange membrane, rather than the carbon species, govern the selectivity of ion removal. This work introduces system-level enhancements aimed at enhancing energy conservation and scaling prevention, providing critical optimization of the FCDI for brackish water softening.
Collapse
Affiliation(s)
- Liang Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiazhou He
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Zhang X, Pang M, Wei Y, Liu F, Zhang H, Zhou H. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water. WATER RESEARCH 2024; 251:121147. [PMID: 38277832 DOI: 10.1016/j.watres.2024.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Flow electrode capacitive deionization (FCDI) is a highly promising desalination technique known for its exceptional electrosorption capacity, making it suitable for efficient salt separation in high salinity water. However, the unsatisfactory charge transfer process between the flow electrode and current collector severely curtails the salt separation and enrichment performance of the FCDI device. To address this issue, three-dimensional titanium mesh (3D-TM) was proposed as a novel current collector for FCDI device, which significantly amplifies the charge transfer area and exhibits excellent salt separation performance. The 3D-TM current collector promotes the electron transfer, charge percolation, and ion migration processes through the electroconvection generated by the turbulence effect on the flow electrode. In the specific case of the 20-mesh 3D-TM, which is composed of 12 stacking layers of titanium mesh, the remarkable average salt removal rate and charge efficiency were achieved 5.06 μmol cm-2 min-1 and 92.9 % under an appropriate applied voltage of 2.0 V, respectively. Dramatically, the desalination performance maintained above 76.4 % over 100 desalination cycles at 2.0 V, demonstrating the exceptional cyclic stability of the 3D-TM FCDI cell. In the seawater desalination, the 3D-TM FCDI cell exhibited an impressive salt removal efficiency of 97.5 % (from 34.2 g L-1 to 0.84 g L-1) for 1 L East China seawater at 2.0 V for 24 h. For lithium-ion enrichment, the FCDI continuous desalting system achieved an astonishing concentration of 17.3 g L-1 for Li+ ions enrichment from an initial concentration of 1.30 g L-1, obtaining the average salt treating rate of 23.6 g m-2h-1 and charge efficiency of 80.0 %. Moreover, the lithium-sodium ions and lithium-magnesium ions enrichments were both conducted, yielding an enriched concentration of 10.4 g L-1 and 7.30 g L-1 for Li+ ions, respectively. These findings highlight the enormous potential of FCDI technology in industrial engineering applications, further establishing it as a highly viable solution.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Mengdie Pang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Yanan Wei
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fei Liu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| | - Hongjian Zhou
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; Salt Lake Chemical Engineering Research Complex, Qinghai University, Xining 810016, China.
| |
Collapse
|