1
|
Wang S, Wang S, Zhang K, Jiang Z, Chen Z, Miao Y, Huang K, Hu C, Wang Z. Nano Fe 3O 4-modified graphene enhancing the removal of sulfamethoxazole under anaerobic digestion and sulfate reduction conditions through improved direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2025; 429:132503. [PMID: 40220920 DOI: 10.1016/j.biortech.2025.132503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/16/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Sulfamethoxazole (SMX) present in pharmaceutical wastewater may pose significant risks to ecological health. This study evaluated the role of redox mediator nano Fe3O4-modified graphene (GF) to facilitate SMX biotransformation in a sulfate reduction reactor (Rs) and an anaerobic digestion reactor (Ra). The results revealed that the SMX removal in Rs and Ra after GF addition reached 92% and 97%, respectively. By stimulating the secretion of humus-like substances (containing quinone group), riboflavin, and conductive proteins, GF enhanced direct interspecies electron transfer (DIET) among microorganisms in both Rs and Ra. Additionally, in both systems, the relative abundance of genes encoding cytochrome c oxidase and type IV pilus assembly proteins decreased. These metabolic shifts reduced the reliance of DIET on cytochrome c and ciliates while enhancing energy utilization. The results confirmed that GF can serve as an effective additive for enhancing SMX degradation in anaerobic systems.
Collapse
Affiliation(s)
- Sifang Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Shu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Kaoming Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zerong Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Ziyao Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, United States; Department of Marine and Environmental Sciences, Northeastern University, Boston 02115, United States.
| | - Kailong Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing 210019, PR China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Dong KY, Yang CX, Pang JL, Chang RR, Chen KY, Yao W, Huang BC, Jin RC. Antibiotics shape the core microbial community distribution between floc and biofilm in an endogenous partial denitrification system: Insight from metabolic pathway. WATER RESEARCH 2025; 280:123491. [PMID: 40090148 DOI: 10.1016/j.watres.2025.123491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The response mechanism of microorganisms in partial denitrification (PD) system under antibiotic stress, particularly microbial energy metabolism and electron transfer, remain inadequately understood. This knowledge gap hinders the establishment of ecological links between microbial dynamics and macro-level reactor performance. To address this, moving bed biofilm reactors were employed to investigate the dynamic changes of microbial community and metabolism under sulfadiazine (SDZ) and ciprofloxacin (CIP) stress. Results showed that dosing 2 mg/L SDZ or CIP accelerated nitrite accumulation, achieving this milestone 15 days earlier than in the control group. At the end of the operational phase, nitrate removal efficiencies reached 90.3 ± 18.3 % (Control), 83.5 ± 16.2 % (SDZ-treated) and 93.9 ± 12.4 % (CIP-treated), with nitrate-to nitrite-transformation rates of 61.3 ± 12.7 %, 65.6 ± 13.1 % and 58.0 ± 21.2 %, respectively. The abundances of energy supply related genes, i.e., sucC and PK were higher in the CIP-treated group, while those in the other two groups were similar. The promoted tricarboxylic acid cycle and glycolysis led to NADH and ATP accumulation, accelerating nitrogen metabolism and benefiting early nitrite accumulation in the antibiotic-stressed system. More importantly, increasing antibiotics concentration from 2 mg/L to 4 mg/L induced selective migration of Thauera from floc to biofilm (abundance in floc reduced to < 2.01 %). Metagenomic sequencing indicated that the higher abundance of narGHI in biofilms, compared to flocs, was crucial for maintaining stable PD performance under antibiotic stress. The electron transport related genes, such as IDH1, DLD and DLAT, were more abundant in biofilms than in flocs after SDZ and CIP addition. These findings provide a theoretical basis for understanding the response mechanism of PD consortia to antibiotic.
Collapse
Affiliation(s)
- Kai-Yue Dong
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chao-Xi Yang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jin-Luo Pang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rong-Rong Chang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ke-Yu Chen
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wei Yao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
3
|
Lin H, Chang J, Liang T, Yang C, Wei Y, Peng W, Xu A, Duan C, Zhao Y. Effects of norfloxacin on the interaction between duckweed and its growth-promoting bacterial assemblages. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138249. [PMID: 40222057 DOI: 10.1016/j.jhazmat.2025.138249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
The entry of antibiotics into aquatic environments can negatively affect various organisms. However, the specific effects of antibiotics on the interactions between aquatic plants and its growth-promoting bacterial assemblages (GPBA) remain inadequately explored. Thus, this study aimed to examine the performance of mono-culture and co-culture systems, involving duckweed and its GPBA, under varying norfloxacin concentrations (0, 0.05, 0.2, 0.5, and 1 mg L-1), to elucidate the effects of norfloxacin on the interactions between duckweed and GPBA. The results revealed that norfloxacin concentrations of ≥ 0.5 mg L-1 significantly inhibited duckweed growth and diminished the growth-promoting abilities of GPBA by reducing the relative abundances of plant growth-promoting bacteria (e.g., Pelomonas, Ensifer, Acidovorax and Sphingomonas). Furthermore, physiological analysis of duckweed suggests that GPBA may enhance the antioxidant capacity of duckweed, thereby alleviating membrane damage induced by norfloxacin. Additionally, norfloxacin concentrations of ≥ 0.2 mg L-1 significantly reduced nitrogen and phosphorus removal efficiencies in the co-culture system. Overall, norfloxacin exerted a more pronounced negative impact on duckweed growth, microbial community and nutrient removal in the co-culture system compared to the mono-culture system, indicating that norfloxacin poses a heightened risk to the co-culture system by disrupting the interactions between duckweed and its GPBA.
Collapse
Affiliation(s)
- Hong Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Tianning Liang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Chen Yang
- Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yingying Wei
- Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Wei Peng
- Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Ankun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China.
| |
Collapse
|
4
|
Li Y, Wu Y, Shao J, Shi J, Sun L, Hong Y, Wang X. Stresses in the food chain and their impact on antibiotic resistance of foodborne pathogens: A review. Food Microbiol 2025; 128:104741. [PMID: 39952755 DOI: 10.1016/j.fm.2025.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Antibiotic resistance in foodborne pathogens represents a major public health concern. The farm-to-fork continuum is recognized as a critical pathway for the development and spread of this resistance. Throughout the food chain, foodborne pathogens are exposed to diverse environmental stresses, including temperature extremes, osmotic pressure, food additives, and disinfectants, and others. These stress factors can influence antibiotic resistance, with effects varying based on the type and intensity of stress, the pathogen species and strain, and the specific antibiotic involved. Stress conditions can trigger bacterial adaptive responses, such as general stress response systems, the SOS response, and genetic mutations, which can confer cross-protection and enhance antibiotic resistance. Conversely, stress-induced injury or metabolic suppression may increase bacterial susceptibility to certain antibiotics. Understanding these complex interactions is crucial, as suboptimal food processing can inadvertently select for resistant strains. Investigating the molecular mechanisms underlying stress adaptation is essential for developing effective strategies to mitigate antibiotic resistance. Optimizing food processing protocols and implementing robust monitoring systems throughout the food chain are essential steps to reduce these risks. A comprehensive understanding of stress-induced antibiotic resistance will provide a scientific basis for improving food safety and safeguarding global public health.
Collapse
Affiliation(s)
- Yun Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, China
| | - Juping Shi
- Zhangjiagang Centre for Disease Control and Prevention, Suzhou, China
| | - Lu Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Hong
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Jia L, Zhou Q, Wu W. Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136875. [PMID: 39706025 DOI: 10.1016/j.jhazmat.2024.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO3--N and SMX were below 2.87 mg L-1 and 7.97 μg L-1 under hydraulic retention time (HRT) of 6 h. The intermittent aeration optimized Mn cycle with treatment performance improved under lower HRT and Mn(II) accumulation decreased. Mn-C composites could reduce the emission of N2O, CO2 and CH4. The dominant genera gradually evolved from fermentation to glycogen aggregation, and from heterotrophic/sulfur autotrophic to heterotrophic denitrifiers by intracellular substance and manganese autotrophic/heterotrophic bacteria. Microbial network analysis indicated higher antagonism, lower modularity and shorter average path among microbes in Mn-C biofilters, which highlighted microbial differentiation and faster electron transfer. Improved functions of denitrification and Mn respiration, and the increasing genes encoding electron transfer chain, including NADH dehydrogenase, Cytc and ubiquinone, further elucidated the superiority of Mn-C composites. These results improved our understanding of Mn-C composites application in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Engineering, School of Environmental and Resource Science, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
6
|
Quan H, Jia Y, Zhang H, Ji F, Shi Y, Deng Q, Hao T, Khanal SK, Sun L, Lu H. Insights into the role of electrochemical stimulation on sulfur-driven biodegradation of antibiotics in wastewater treatment. WATER RESEARCH 2024; 266:122385. [PMID: 39255566 DOI: 10.1016/j.watres.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The presence of antibiotics in wastewater poses significant threat to our ecosystems and health. Traditional biological wastewater treatment technologies have several limitations in treating antibiotic-contaminated wastewaters, such as low removal efficiency and poor process resilience. Here, a novel electrochemical-coupled sulfur-mediated biological system was developed for treating wastewater co-contaminated with several antibiotics (e.g., ciprofloxacin (CIP), sulfamethoxazole (SMX), chloramphenicol (CAP)). Superior removal of CIP, SMX, and CAP with efficiencies ranging from 40.6 ± 2.6 % to 98.4 ± 1.6 % was achieved at high concentrations of 1000 μg/L in the electrochemical-coupled sulfur-mediated biological system, whereas the efficiencies ranged from 30.4 ± 2.3 % to 98.2 ± 1.4 % in the control system (without electrochemical stimulation). The biodegradation rates of CIP, SMX, and CAP increased by 1.5∼1.9-folds under electrochemical stimulation compared to the control. The insights into the role of electrochemical stimulation for multiple antibiotics biodegradation enhancement was elucidated through a combination of metagenomic and electrochemical analyses. Results showed that sustained electrochemical stimulation significantly enriched the sulfate-reducing and electroactive bacteria (e.g., Desulfobulbus, Longilinea, and Lentimicrobiumin on biocathode and Geobactor on bioanode), and boosted the secretion of electron transport mediators (e.g., cytochrome c and extracellular polymeric substances), which facilitated the microbial extracellular electron transfer processes and subsequent antibiotics removal in the sulfur-mediated biological system. Furthermore, under electrochemical stimulation, functional genes associated with sulfur and carbon metabolism and electron transfer were more abundant, and the microbial metabolic processes were enhanced, contributing to antibiotics biodegradation. Our study for the first time demonstrated that the synergistic effects of electrochemical-coupled sulfur-mediated biological system was capable of overcoming the limitations of conventional biological treatment processes. This study shed light on the mechanism of enhanced antibiotics biodegradation via electrochemical stimulation, which could be employed in sulfur-mediated bioprocess for treating antibiotic-contaminated wastewaters.
Collapse
Affiliation(s)
- Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fahui Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yongsen Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Qiujin Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Chen Z, Hu Y, Qiu G, Liang D, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Unraveling the effects and mechanisms of antibiotics on aerobic simultaneous nitrogen and phosphorus removal by Acinetobacter indicus CZH-5. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134831. [PMID: 38850942 DOI: 10.1016/j.jhazmat.2024.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The effects of antibiotics, such as tetracycline, sulfamethoxazole, and ciprofloxacin, on functional microorganisms are of significant concern in wastewater treatment. This study observed that Acinetobacter indicus CZH-5 has a limited capacity to remove nitrogen and phosphorus using antibiotics (5 mg/L) as the sole carbon source. When sodium acetate was supplied (carbon/nitrogen ratio = 7), the average removal efficiencies of ammonia-N, total nitrogen, and orthophosphate-P increased to 52.46 %, 51.95 %, and 92.43 %, respectively. The average removal efficiencies of antibiotics were 84.85 % for tetracycline, 39.32 % for sulfamethoxazole, 18.85 % for ciprofloxacin, and 23.24 % for their mixtures. Increasing the carbon/nitrogen ratio to 20 further improved the average removal efficiencies to 72.61 % for total nitrogen and 97.62 % for orthophosphate-P (5 mg/L antibiotics). Additionally, the growth rate and pollutant removal by CZH-5 were unaffected by the presence of 0.1-1 mg/L antibiotics. Transcriptomic analysis revealed that the promoted translation of aceE, aarA, and gltA genes provided ATP and proton -motive forces. The nitrogen metabolism and polyphosphate genes were also affected. The expression of acetate kinase, dehydrogenase, flavin mononucleotide enzymes, and cytochrome P450 contributed to antibiotic degradation. Intermediate metabolites were investigated to determine the reaction pathways.
Collapse
Affiliation(s)
- Zuhao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
8
|
Zhong L, Sun HJ, Pang JW, Ding J, Zhao L, Xu W, Yuan F, Zhang LY, Ren NQ, Yang SS. Ciprofloxacin affects nutrient removal in manganese ore-based constructed wetlands: Adaptive responses of macrophytes and microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134579. [PMID: 38761761 DOI: 10.1016/j.jhazmat.2024.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Xu Y, Fu Q, He D, Yang F, Ma X, Wang Y, Liu Z, Liu X, Wang D. Exposure of polyethylene microplastics affects sulfur migration and transformation in anaerobic system. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134520. [PMID: 38718512 DOI: 10.1016/j.jhazmat.2024.134520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Polyethylene (PE) microplastic, which is detected in various environmental media worldwide, also inevitably enters wastewater treatment plants, which may have an impact on anaerobic processes in wastewater treatment. In this work, the effect of PE microplastics on anaerobic sulfur transformation was explored. Experimental results showed that PE microplastics addition at 0.1%- 0.5% w/w promoted H2S production by 14.8%-27.4%. PE microplastics enhanced the release of soluble organic sulfur and inorganic sulfate, and promoted the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Mechanism analysis showed that PE microplastics increased the content of electroactive components (e.g., protein and humic acids) contained in extracellular polymeric substances (EPS). In particular, PE microplastics increased the proportion and the dipole moment of α-helix, an important component involved in electron transfer contained in extracelluar protein, which provided more electron transfer sites and promoted the α-helix mediated electron transfer. These enhanced the direct electron transfer ability of EPSs, which might explain why PE microplastics facilitated the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Correspondingly, metagenomic analysis revealed that PE microplastics increased the relative abundance of S2- producers (e.g., Desulfobacula and Desulfonema) and the relative abundance of functional genes involved in anaerobic sulfur transformation (e.g., PepD and cysD), which were beneficial to H2S production in anaerobic system.
Collapse
Affiliation(s)
- Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
10
|
Wang T, Wang H, Ran X, Wang Y. Salt stimulates sulfide-driven autotrophic denitrification: Microbial network and metagenomics analyses. WATER RESEARCH 2024; 257:121742. [PMID: 38733967 DOI: 10.1016/j.watres.2024.121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Sulfur autotrophic denitrification (SADN) is a promising biological wastewater treatment technology for nitrogen removal, and its performance highly relies on the collective activities of the microbial community. However, the effect of salt (a prevailing characteristic of some nitrogen-containing industrial wastewaters) on the microbial community of SADN is still unclear. In this study, the response of the sulfide-SADN process to different salinities (i.e., 1.5 % salinity, 0.5 % salinity, and without salinity) as well as the involved microbial mechanisms were investigated by molecular ecological network and metagenomics analyses. Results showed that the satisfactory nitrogen removal efficiency (>97 %) was achieved in the sulfide-SADN process (S/N molar ratio of 0.88) with 1.5 % salinity. In salinity scenarios, the genus Thiobacillus significantly proliferated and was detected as the dominant sulfur-oxidizing bacteria in the sulfide-SADN system, occupying a relative abundance of 29.4 %. Network analysis further elucidated that 1.5 % salinity had enabled the microbial community to form a more densely clustered network, which intensified the interactions between microorganisms and effectively improved the nitrogen removal performance of the sulfide-SADN. Metagenomics sequencing revealed that the abundance of functional genes encoding for key enzymes involved in SADN, dissimilatory nitrate reduction to ammonium, and nitrification was up-regulated in the 1.5 % salinity scenario compared to that without salinity, stimulating the occurrence of multiple nitrogen transformation pathways. These multi-paths contributed to a robust SADN process (i.e., nitrogen removal efficiency >97 %, effluent nitrogen <2.5 mg N/L). This study deepens our understanding of the effect of salt on the SADN system at the community and functional level, and favors to advance the application of this sustainable bioprocess in saline wastewater treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Chen H, Jia Y, Li J, Ai Y, Zhang W, Han L, Chen M. Enhanced efficiencies on purifying acid mine drainage in constructed wetlands based on synergistic adsorption of attapulgite-soda residue composites and microbial sulfate reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134221. [PMID: 38615651 DOI: 10.1016/j.jhazmat.2024.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.
Collapse
Affiliation(s)
- Hongping Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufei Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Jinghongze Environmental Technology Co Ltd, Nanjing 210000, China
| | - Yulu Ai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Fu Q, Li C, Liu Z, Ma X, Xu Y, Wang Y, Liu X, Wang D. The Impact of Bisphenol A on the Anaerobic Sulfur Transformation: Promoting Sulfur Flow and Toxic H 2S Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8043-8052. [PMID: 38648493 DOI: 10.1021/acs.est.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
13
|
Chen X, Yang Y, Wang J, Pan C, Zhang Z, Chen S, Xie S. Impacts of o-cresol spill on composition and function of river sediment and soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31978-31988. [PMID: 38641693 DOI: 10.1007/s11356-024-33043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
o-Cresol is a toxic substance with strong irritating and corrosive effects on skin and mucous membranes. To date, information on the effects of o-cresol on microbial communities in the natural environment is very limited. In the present study, 16S rRNA sequencing and metagenomic technique were carried out to elucidate the effects of the o-cresol spill on microbial communities in river sediments and nearby soils. o-Cresol spill induced the increase in the relative abundance of phyla Planctomycetes and Gemmatimonadetes, suggesting their resilience to o-cresol-induced stress. Uncultured Gemmatimonadetes genera and the MND1 genus exhibited enrichment, while the Pseudomonas genus dominated across all samples, indicating their potential pivotal roles in adapting to the o-cresol spill. Moreover, o-cresol spill impaired the metabolic functions of microbes but triggered their defense mechanisms. Under o-cresol pressure, microbial functions related to carbon fixation were upregulated and functions associated with sulfur metabolism were downregulated. In addition, the o-cresol spill led to an increase in functional genes related to the conversion of o-cresol to 3-methylcatechol. Several genes involved in the degradation of aromatic compounds were also identified, potentially contributing to the biodegradation of o-cresol. This study provides fresh insights into the repercussions of an abrupt o-cresol spill on microbial communities in natural environments, shedding light on their adaptability, defense mechanisms, and biodegradation potential.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Ji Wang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Chaoyi Pan
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Zhengke Zhang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China.
| | - Sili Chen
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Yang JH, Fu JJ, Jia ZY, Geng YC, Ling YR, Fan NS, Jin RC. Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108599. [PMID: 38554504 DOI: 10.1016/j.envint.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yu Jia
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Feng B, Chen J, Wang C, You G, Lin J, Gao H, Han S, Ma J. Ofloxacin weakened treatment performance of rural domestic sewage in an aerobic biofilm system by affecting biofilm resistance, bacterial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 246:118036. [PMID: 38163543 DOI: 10.1016/j.envres.2023.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shanrui Han
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang 311122, PR China
| | - Junchao Ma
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang 311122, PR China
| |
Collapse
|
16
|
Yan Q, Zhong Z, Li X, Cao Z, Zheng X, Feng G. Characterization of heavy metal, antibiotic pollution, and their resistance genes in paddy with secondary municipal-treated wastewater irrigation. WATER RESEARCH 2024; 252:121208. [PMID: 38309064 DOI: 10.1016/j.watres.2024.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Secondary municipal-treated wastewater irrigation may introduce residual antibiotics into the agricultural systems contaminated with certain heavy metals, ultimately leading to the coexistence of antibiotics and heavy metals. The coexistence may induce synergistic resistance to both in the microbial community. Here, we investigated the effects of long-term municipal-treated irrigation for rice on the microbiome and resistome. The results showed that the target antibiotics were undetectable in edible grains, and the heavy metal concentrations did not exceed the standard in edible rice grains. Heavy metal resistance genes (MRGs) ruvB and acn antibiotic resistance genes (ARGs) sul1 and sul2 were the dominating resistant genes. The coexistence of antibiotics and heavy metals affected the microbial community and promoted metal and antibiotic resistance. Network analysis revealed that Proteobacteria were the most influential hosts for MRGs, ARGs, and integrons, and co-selection may serve as a potential mechanism for resistance maintenance. MRG czcA and ARG sul1 can be recommended as model genes to study the co-selection of ARGs and MRGs in environments. The obtained results highlight the importance of considering the co-occurrence of heavy metals and antibiotics while developing effective methods to prevent the transmission of ARGs. These findings are critical for assessing the possible human health concerns associated with secondary municipal-treated wastewater irrigation for agriculture and improving the understanding of the coexistence of heavy metals and antibiotics.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection & Supervision Testing Center, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Zhengzheng Zhong
- China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaoyan Li
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection & Supervision Testing Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhaoyun Cao
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection & Supervision Testing Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaolong Zheng
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection & Supervision Testing Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
17
|
Wei L, Zheng J, Han Y, Xu X, Li M, Zhu L. Insights into the roles of biochar pores toward alleviating antibiotic resistance genes accumulation in biofiltration systems. BIORESOURCE TECHNOLOGY 2024; 394:130257. [PMID: 38151208 DOI: 10.1016/j.biortech.2023.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Biofiltration systems would harbor and spread various antibiotic resistance genes (ARGs) when treating antibiotic micro-pollution, constituting a potential ecological risk. This study aimed to investigate the effects of biochar pores on ARG emergence and related microbial response mechanisms in bench-scale biofiltration systems. Results showed that biochar pores effectively reduced the absolute copies of the corresponding ARGs sul1 and sul2 by 54.1% by lowering the sorbed-SMX's bioavailability compared to non-porous anthracite. An investigation of antimicrobial resistomes revealed a considerable decrease in the abundance and diversity of ARGs and mobile gene elements. Metagenomic and metaproteomic analysis demonstrated that biochar pores induced the changeover of microbial defense strategy against SMX from blocking SMX uptake by EPS absorbing to SMX biotransformation. Microbial SOS response, antibiotic efflux pump, EPS secretion, and biofilm formation were decreased. Functions related to SMX biotransformation, such as sadABC-mediated transformation, xenobiotics degradation, and metabolism, were significantly promoted.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China.
| |
Collapse
|
18
|
Zhao C, Duan X, Liu C, Huang H, Wu M, Zhang X, Chen Y. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18306-18316. [PMID: 37043541 DOI: 10.1021/acs.est.2c09341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antibiotics often coexist with other pollutants (e.g., nitrate) in an aquatic environment, and their simultaneous biological removal has attracted widespread interest. We have found that sulfamethoxazole (SMX) and nitrate can be efficiently removed by the coculture of a model denitrifier (Paracoccus denitrificans, Pd) and Shewanella oneidensis MR-1 (So), and SMX degradation is affected by NADH production and electron transfer. In this paper, the mechanism of a coculture promoting NADH production and electron transfer was investigated by proteomic analysis and intermediate experiments. The results showed that glutamine and lactate produced by Pd were captured by So to synthesize thiamine and heme, and the released thiamine was taken up by Pd as a cofactor of pyruvate and ketoglutarate dehydrogenase, which were related to NADH generation. Additionally, Pd acquired heme, which facilitated electron transfer as heme, was the important composition of complex III and cytochrome c and the iron source of iron sulfur clusters, the key component of complex I in the electron transfer chain. Further investigation revealed that lactate and glutamine generated by Pd prompted So chemotactic moving toward Pd, which helped the two bacteria effectively obtain their required substances. Obviously, metabolite cross-feeding promoted NADH production and electron transfer, resulting in efficient SMX biodegradation by Pd and So in the presence of nitrate. Its feasibility was finally verified by the coculture of an activated sludge denitrifier and So.
Collapse
Affiliation(s)
- Chunxia Zhao
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
19
|
Xu T, Fang D, Li F, Wang Z, Liu Y. A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0245. [PMID: 37808177 PMCID: PMC10557118 DOI: 10.34133/research.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use.
Collapse
Affiliation(s)
- Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine,
Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Wang J, Chi Q, Pan L, Zhang R, Mu Y, Shen J. New insights into enhanced biodegradation of 4-bromphenol in a nitrate-reducing system: Process performance and mechanism. WATER RESEARCH 2023; 242:120200. [PMID: 37336182 DOI: 10.1016/j.watres.2023.120200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Due to the recalcitrant nature of halogenated phenol, conventional anaerobic bioprocess is often limited by low removal efficiency and poor process stability. At the presence of electron acceptors such as nitrate, 4-bromophenol (4-BP) removal efficiency is significantly higher than that in the anaerobic control system, but the mechanism involved is still unclear. Therefore, an up-flow nitrate-reducing bioreactor (NRBR) was designed and consecutively performed for 215 days to explore the synergistic mechanism for BPs biodegradation and nitrate reduction. Complete 4-BP biodegradation could be obtained in NRBR at HRT and 4-BP loading rate of 24 h and 0.29 mol m - 3d - 1, while the TOC removal and nitrate reduction efficiencies were as high as 91.33±2.11% and 98.31±1.33%, respectively. Population evolution analyses revealed that the microorganisms involved in 4-BP debromination and biodegradation (Candidatus Peregrinibacteria, Denitratisoma, Anaerolineaceae and Ignavibacterium) as well as nitrate reduction (Denitratisoma, Anaerolineaceae, Limnobacter and Ignavibacterium) were significantly enriched in NRBR. Major intermediates during 4-BP biodegradation, including 4-bromocatechol, 4‑bromo-6-oxo-hexanoic acid and succinic acid were identified, while a distinct 4-BP biodegradation pathway via hydration, aromatic-ring cleavage, hydrolysis debromination and oxidation was expounded. Metagenomic analysis indicated that oxidation (had, pht4, boh, butA), hydrolysis debromination ((S)-2-haloacid dehalogenase) and bio-mineralization (gabD, sdhA) of 4-BP were largely enhanced in NRBR. Moreover, carbon, nitrogen, energy and amino acid metabolisms were significantly facilitated with the injection of nitrate in order to provide energy and electron, thus enhanced microbial activities and enzymatic reactions in NRBR. The proposed mechanism provides new insights into our mechanistic understanding of halogenated phenol biodegradation and the development of sustainable bioremediation strategies.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Chi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ranran Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Bhat S, Kaur H, Verma P, Pamposh. Characterization of the Sediment Bacterial Community Structure and Composition in Najafgarh Lake and Adjoining Dhansa Barrage. Indian J Microbiol 2023; 63:25-32. [PMID: 37188234 PMCID: PMC10172446 DOI: 10.1007/s12088-022-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
This study was undertaken to assess the changes in the community structure, diversity, and composition of sediment bacteria in a shallow lake, Najafgarh Lake (NL), that receives untreated sewage effluent through drains connected to it. These changes were analyzed by comparing the sediment bacterial community structure of NL to the sediment bacterial community structure of Dhansa Barrage (DB), which receives no such effluents. 16S rRNA amplicon was used for bacterial community analysis. Water and sediment samples were also analyzed and compared revealing high conductivity, ammonia, nitrite content, and low dissolved oxygen in NL. The organic matter content is also higher in the sediments of NL. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are the predominant phyla in both sites and account for 91% of total bacterial abundance in DB and only 77% in the case of NL. Proteobacteria have the highest relative abundance, accounting for around 42% of the total bacterial population in the case of DB and Firmicutes has the highest relative abundance in Najafgarh at 30%. The diversity analysis found significant differences in the community structure at the two sites. The variation in the bacterial communities in the two wetlands is significantly associated with two water parameters (conductivity and temperature) and two sediment parameters (Sediment Nitrogen and Sediment Organic Matter). Correlation Analysis showed that high ammonia, nitrite, and conductance in NL resulted in bacterial communities shifting towards phyla abundant in degraded ecosystems like Acidobacteria, Choloroflexi, Caldiserica, Aminicenantes, Thaumarchaeota, and Planctomycetes.
Collapse
Affiliation(s)
- Sandhya Bhat
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Harbinder Kaur
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067 India
| | - Priyanka Verma
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Pamposh
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| |
Collapse
|
22
|
Han J, Pang M, Meng D, Qiu J, Wang D. Construction of Bouquet-like Bi 2Se 3/Bi 2O 3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1896. [PMID: 36903010 PMCID: PMC10004082 DOI: 10.3390/ma16051896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Using low-density solar energy in the environment and converting it into chemical energy that can drive the degradation of organic pollutants is considered to be a very promising strategy for solving the problem of environmental pollution. The efficacy of photocatalytic destruction of organic contaminants is nonetheless constrained by the high composite rate of photogenic carriers, insufficient light absorption and utilization impact, and sluggish charge transfer rate. In this work, we created a new type of heterojunction photocatalyst with a spherical Bi2Se3/Bi2O3@Bi core-shell structure and investigated its degrading properties of organic pollutants in the environment. Interestingly, benefiting from the fast electron transfer capability of the Bi0 electron bridge, the charge separation and transfer efficiency between Bi2Se3 and Bi2O3 is greatly improved. In this photocatalyst, Bi2Se3 not only has a photothermal effect to speed up the process of photocatalytic reaction, but also has fast electrical conductivity of topological materials at the surface, which speeds up the transmission efficiency of photogenic carriers. As expected, the removal performance of the Bi2Se3/Bi2O3@Bi photocatalyst to atrazine is 4.2 and 5.7 times higher than that of the original Bi2Se3 and Bi2O3. Meanwhile, the best samples Bi2Se3/Bi2O3@Bi showed 98.7%, 97.8%, 69.4%, 90.6%, 91.2%, 77.2%, 97.7%, and 98.9% removal of ATZ, 2,4-DCP, SMZ, KP, CIP, CBZ, OTC-HCl, and RhB, and 56.8%, 59.1%, 34.6%, 34.5%, 37.1%, 73.9%, and 78.4% mineralization. Through characterization such as XPS and electrochemical workstations, it is proved that the photocatalytic properties of Bi2Se3/Bi2O3@Bi catalysts are far superior to other materials, and a suitable photocatalytic mechanism is proposed. A novel form of bismuth-based compound photocatalyst is anticipated to be produced as a result of this research in order to address the increasingly critical problem of environmental water pollution in addition to presenting fresh avenues for the creation of adaptable nanomaterials for additional environmental applications.
Collapse
Affiliation(s)
- Juncheng Han
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Menghan Pang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Donghuan Meng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianrong Qiu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dongbo Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning 530004, China
| |
Collapse
|