1
|
Xia Q, Liu Y, Zhong X, Chen G, Li L, Wang Z, Zhang C, Zhang Y, Ding Y, Zhao X, Zhou Z. Interaction mechanisms between fouling and chemical cleaning on the ageing behavior of ion-exchange membranes during electrodialysis treatment of flue gas desulfurization wastewater. WATER RESEARCH 2025; 271:122897. [PMID: 39647310 DOI: 10.1016/j.watres.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Chemically irreversible fouling (CIF) and erosion caused by chemical cleaning would result in the changes of desalination performance and membrane properties of the ion-exchange membranes (IEMs), which were defined as membrane ageing. Roles of CIF and chemical erosion in the ageing process and the interaction mechanisms have been systematically investigated during the electrodialysis treatment of flue gas desulfurization wastewater. The main foulants contributed to CIF were anionic polyacrylamide (APAM) and CaSO4 for anion-exchange membranes (AEMs) and CaSO4 for cation-exchange membranes. The variation in the ageing behaviors has undergone three main stages. The general tendency of desalination rates was initially decreased, subsequently increased, and gradually declined at last. Membrane morphology and chemical structure of the aged IEMs transformed as a result of the CIF as well as the alternant NaOH and HCl cleaning. Chemical erosion caused the degradation of functional groups and polymer matrix, which was demonstrated by the changes in ion exchange capacity, contact angle, thermal stability and mechanical strength. Cleaning efficiency was limited by CIF, while chemical erosion would in turn affect membrane fouling behaviors. The extended Derjaguin-Landau-Verwey-Overbeek analysis verified that the antifouling ability of aged AEMs enhanced with a decrease of the total interaction energy of APAM-AEM.
Collapse
Affiliation(s)
- Qing Xia
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying Liu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xu Zhong
- Jiangsu Hairong Water Co., Ltd, Nantong 226002, China
| | - Guofeng Chen
- Jiangsu Hairong Water Co., Ltd, Nantong 226002, China
| | - Li Li
- China Coal Xinji Lixin Power Generation Co., Ltd, Bozhou 236744, China
| | - Zhenfa Wang
- China Coal Xinji Lixin Power Generation Co., Ltd, Bozhou 236744, China
| | - Chenbing Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yiwei Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying Ding
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
2
|
Li D, Zhai J, Wang K, Shen Y, Huang X. Three-Dimensional Reconstruction-Characterization of Polymeric Membranes: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2891-2916. [PMID: 39913944 DOI: 10.1021/acs.est.4c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Polymeric membranes serve as vital separation materials in diverse energy and environmental applications. A comprehensive understanding of three-dimensional (3D) structures of membranes is critical to performance evaluation and future design. Such quantitative 3D structural information is beyond the limit of most employed conventional two-dimentional characterization techniques such as scanning electron microscopy. In this review, we summarize eight types of 3D reconstruction-characterization techniques for membrane materials. Originated from life and materials science, these techniques have been optimized to reveal the 3D structures of membrane materials in the separation field. We systematically introduce the theories of each technique, summarize the sample preparation procedures developed for membrane materials, and demonstrate step-by-step data processing, including 3D model reconstruction and subsequent characterization. Representative case studies are introduced to show the progress of this field and how technical challenges have been overcome over the years. In the end, we share our perspectives and believe that this review can serve as a useful reference for 3D reconstruction-characterization techniques developed for membrane materials.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Juan Zhai
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Yuexiao Shen
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wenqiong W, Jianju L, Jiyang Z, Zhangwei H, Congcong T. The effect of ionic regulation on the structure of whey protein during ultrafiltration process and hydraulic reverse cleaning efficiency. Int J Biol Macromol 2025; 286:138361. [PMID: 39647750 DOI: 10.1016/j.ijbiomac.2024.138361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The effects of ionic regulation on the structure of membrane surface proteins and backwashing efficiency during ultrafiltration were investigated to reveal the mechanism of ionic mitigating membrane fouling. The repulsion between proteins and membrane was enhanced after ion regulation. With the extension of ultrafiltration time, the α-helix and random coil of membrane surface proteins were decreased, while the β-turn structure increased which was subjected to continuous regulation by Na+, Zn2+ and K+ at 4 min, 8 min and 12 min, respectively. Fourier transform infrared spectroscopy and Raman spectroscopy of membrane surface proteins showed that intra- and intermolecular hydrogen bonds of proteins were reduced on membrane surface. The exposed hydrophobic amino acid groups were reduced. The experimental group which was regulated by Na+ Zn2+ and K+ was favourable for the reduction of cake resistance (Rc) and had a lower square roughness (Rq) on membrane surface during filtration process. However, this could lead to the increased pore blockage (Rp), which was not conducive to hydraulic reverse cleaning efficiency compared to the experimental group regulated by K+, Zn2+ and Mg2+. Therefore, regulation of the whey ultrafiltration process by different ions at specific time is helpful in alleviating membrane fouling.
Collapse
Affiliation(s)
- Wang Wenqiong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.
| | - Li Jianju
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Zhou Jiyang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - He Zhangwei
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tang Congcong
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Choi SJ, Osman A, Kim S, Kang S, Hwang DS. Adsorptive chito-beads for control of membrane fouling. Carbohydr Polym 2024; 327:121642. [PMID: 38171670 DOI: 10.1016/j.carbpol.2023.121642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Chitosan has excellent antimicrobial, adsorption, heavy metal removal, and adhesion properties, making it a good substitute for microplastic-based cleaners. Here, chitosan microbeads (chito-beads) of various sizes ranging from 32 μm to 283 μm were prepared via emulsion using a liquid on oil method and the feasibility of using them as an essential constituent in a chemical cleaning solution for a reverse-osmosis (RO) membrane-fouling-control process was assessed. Prior to the assessment the cleaning efficiency of a solution containing chito-beads, the interaction energy between chitosan and a representative organic foulant (humic acid (HA)) in a RO membrane fouling was analyzed using colloidal atomic force microscopy, and the strongest attraction between chitosan and HA was observed in an aqueous solution. When comparing the membrane cleaning efficiency of cleaning solutions with and without chito-beads, smaller chito-beads (32 μm and 70 μm) were found to have higher cleaning efficiency. Applications of chito-beads to the membrane cleaning process can enhance the cleaning efficiency through the physicochemical interaction with organic foulants. This study can widen the use of chito-beads as an additive to membrane chemical cleaning solutions to control membrane fouling in other membrane processes as well.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Asila Osman
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Department of Chemical Engineering, University of Khartoum, Khartoum 11115, Sudan
| | - Sion Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, Republic of Korea; ANPOLY, Pohang, Gyeongsanbuk-do 37666, Republic of Korea.
| |
Collapse
|
5
|
Song Y, Meng C, Lyu Y, Liu Y, Li Y, Jiang Z, Jiang K, Hu C. Self-cleaning foulant attachment on near-infrared responsive photocatalytic membrane for continuous dynamic removing antibiotics in sewage effluent environment. WATER RESEARCH 2024; 248:120867. [PMID: 37980863 DOI: 10.1016/j.watres.2023.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Bifunctional photocatalytic nanofiltration (PNF) membrane has become a reliable frontier technique for removing refractory organic micropollutants. However, the active mitigated fouling mechanism from the microscopic perspective during its long-term operation of purifying real micro-polluted water is rarely studied. Herein, with an integrated use of QSense Explorer and confocal laser scanning microscope techniques, self-cleaning foulant attachment on an activated and customized near-infrared responsive polymeric PNF (termed as nPNF) membrane with good service performance for continuous dynamic removing antibiotics in sewage effluent environment was firstly elucidated. Time-dependent changes in dissipation oscillation frequency, sensed mass and the visualized foulant spatial distribution all indicated that there were only sporadic foulant attachment, an extremely low fouling layer thickness and irreversible fouling rate on/of the activated nPNF membrane top surface, thereby endowing it with excellent self-cleaning characteristic. This is probably because the reactive oxygen species (mainly •O2- and •OH) concurrently destroys the integrity of fouling layer and its internal adhesion structure, transforming part of the irreversible fouling on nPNF membrane surface into reversible one that is easy to wash off. These new horizons provided useful insight on the fate of selected antibiotics in the to-be-removed stage and self-cleaning foulant attachment of PNF membrane.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Chunchun Meng
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yinghua Lyu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yuange Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zuqiong Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Hu Z, Guan D, Sun Z, Zhang Z, Shan Y, Wu Y, Gong C, Ren X. Osmotic cleaning of typical inorganic and organic foulants on reverse osmosis membrane for textile printing and dyeing wastewater treatment. CHEMOSPHERE 2023:139162. [PMID: 37290520 DOI: 10.1016/j.chemosphere.2023.139162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Reverse osmosis (RO) is one of the most fundamental membrane technology because it has higher salt rejections, which suffers from the issue of membrane fouling, as the membrane is inevitably exposed to foulants during the filtration process. For different fouling mechanisms of RO membrane, physical and chemical cleaning are widely used in the control of RO membrane fouling. The present study investigated the performance and water flux recovery using osmotic cleaning to clean the typical inorganic and organic foulants on RO membrane for textile printing and dyeing wastewater treatment. The effects of operation conditions (i.e., the concentration of cleaning solution, the filtrating time and cleaning time, and the flow rate of cleaning solution) on relative water flux recovery were examined. The results show that a highly water flux recovery (98.3% for cleaning of inorganic fouling and 99.6% for cleaning of organic fouling) was achieved under optimal operation of the concentration and flow rate of cleaning solution and the filtrating and cleaning time. Moreover, the experiment of repeated "filtrating-cleaning" cycles indicated that the osmotic cleaning has highly performance of recoverability of water flux (over 95.0%) can be extended in a relatively long time. The experimental results and changes on SEM and AFM images of RO membrane confirmed the successful development and application of osmotic cleaning for inorganic and organic fouling of RO membrane.
Collapse
Affiliation(s)
- Zhifeng Hu
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Detian Guan
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Beijing Management Division of North Grand Canal, Beijing, 101100, China
| | - Zhimeng Sun
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Zhongguo Zhang
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China.
| | - Yue Shan
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Yue Wu
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Chenhao Gong
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Xiaojing Ren
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| |
Collapse
|
7
|
Lee MH, Choi SJ, Jang D, Kang S, Jung HJ, Hwang DS. A peptide of PilZ domain-containing protein controls wastewater-treatment-membrane biofouling by inducing bacterial attachment. WATER RESEARCH 2023; 240:120085. [PMID: 37244016 DOI: 10.1016/j.watres.2023.120085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Membrane-based wastewater reclamation is used to mitigate water scarcity; however, irreversible biofouling is an elusive problem that hinders the efficiency of a forward-osmosis (FO) membrane-based process, and the protein responsible for fouling is unknown. Herein, we identified fouling proteins by analyzing the microbiome and proteome of wastewater extracellular polymeric substances responsible for strong irreversible FO-membrane fouling. The IGLSSLPR peptide of a PilZ domain-containing protein was found to recruit bacterial attachment when immobilized on the membrane surface while suppressing it when dissolved, in a similar manner to the Arg-Gly-Asp (RGD) peptide in mammalian cell cultures. Bacteria adhere to IGLSSLPR and poly-l-lysine-coated membranes with similar energies and exhibit water fluxes that decline similarly, which is ascribable to interaction as strong as electrostatic interactions in the peptide-coated membranes. We conclude that IGLSSLPR is the key domain responsible for membrane fouling and can be used to develop antifouling technology against bacteria, which is similar to the current usage of RGD peptide in mammalian cell cultures.
Collapse
Affiliation(s)
- Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seung-Ju Choi
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Hee-Jung Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; R&D Center, ANPOLY INC., Pohang, Gyeongsangbuk-do, 37666, Republic of Korea.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, South Korea.
| |
Collapse
|
8
|
Vera-Villalobos H, Riquelme C, Silva-Aciares F. Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. MEMBRANES 2023; 13:membranes13050454. [PMID: 37233515 DOI: 10.3390/membranes13050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Biofouling refers to the undesirable growth of microorganisms on water-submerged surfaces. Microfouling, the initial state of biofouling, is characterized by aggregates of microbial cells enclosed in a matrix of extracellular polymeric substances (EPSs). In seawater desalination plants, filtration systems, such as reverse-osmosis membranes (ROMs), are affected by microfouling, which decreases their efficiency in obtaining permeate water. The existing chemical and physical treatments are expensive and ineffective; therefore, controlling microfouling on ROMs is a considerable challenge. Thus, new approaches are necessary to improve the current ROM cleaning treatments. This study demonstrates the application of Alteromonas sp. Ni1-LEM supernatant as a cleaning agent for ROMs in a desalination seawater plant in northern Chile (Aguas Antofagasta S.A.), which is responsible for supplying drinking water to the city of Antofagasta. ROMs treated with Altermonas sp. Ni1-LEM supernatant exhibited statistically significant results (p < 0.05) in terms of seawater permeability (Pi), permeability recovery (PR), and the conductivity of permeated water compared with control biofouling ROMs and those treated with the chemical cleaning protocol applied by the Aguas Antofagasta S.A. desalination plant.
Collapse
Affiliation(s)
- Hernán Vera-Villalobos
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Carlos Riquelme
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Fernando Silva-Aciares
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
- Departamento de Biotecnología, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
9
|
Park S, Choi S, Lee YK, Jho Y, Kang S, Hwang DS. Cation-π Interactions Contribute to Hydrophobic Humic Acid Removal for the Control of Hydraulically Irreversible Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3853-3863. [PMID: 36826440 DOI: 10.1021/acs.est.2c07593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydraulically irreversible membrane fouling is a major problem encountered during membrane-based water purification. Membrane foulants present large hydrophobic fractions, with humic acid (HA) being a prevalent example of hydrophobic natural organic matter. Furthermore, HA contains numerous aromatic rings (π electrons), and its hydrophobic interactions are a major cause of irreversible membrane fouling. To address this issue, in this study, we used the cation-π interaction, which is a strong noncovalent, competitive interaction present in water. Because the strength of cation-π interactions depends on the combination of cations and π molecules, utilizing the appropriate cations will effectively remove irreversible fouling caused by hydrophobic HA. We performed macroscale experiments to determine the cleaning potential of the test cations, nanomechanically analyzed the changes in HA cohesion caused by the test cations using a surface force apparatus and an atomic force microscope, and used molecular dynamics simulations to elucidate the HA removal mechanism of test studied cations. We found that the addition of 1-ethyl-3-methylimidazolium, an imidazolium cation with an aromatic moiety, effectively removed the HA layer by weakening its cohesion, and the size, hydrophobicity, and polarity of the HA layer synergistically affected the HA removal mechanism based on the cation-π interactions.
Collapse
Affiliation(s)
- Sohee Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Seungju Choi
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeong Kyu Lee
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Yongseok Jho
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Li B, Shen L, Zhao Y, Yu W, Lin H, Chen C, Li Y, Zeng Q. Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network. J Colloid Interface Sci 2023; 640:110-120. [PMID: 36842417 DOI: 10.1016/j.jcis.2023.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Since adhesive membrane fouling is critically determined by the interfacial interaction between a foulant and a rough membrane surface, efficient quantification of the interfacial interaction is critically important for adhesive membrane fouling mitigation. As a current available method, the advanced extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory involves complicated rigorous thermodynamic equations and massive amounts of computation, restricting its application. To solve this problem, artificial intelligence (AI) visualization technology was used to analyze the existing literature, and the genetic algorithm back propagation (GABP) artificial neural network (ANN) was employed to simplify thermodynamic calculation. The results showed that GABP ANN with 5 neurons could obtain reliable prediction performance in seconds, versus several hours or even days time-consuming by the advanced XDLVO theory. Moreover, the regression coefficient (R) of GABP reached 0.9999, and the error between the prediction results and the simulation results was less than 0.01%, indicating feasibility of the GABP ANN technique for quantification of interfacial interaction related with adhesive membrane fouling. This work provided a novel strategy to efficiently optimize the thermodynamic prediction of adhesive membrane fouling, beneficial for better understanding and control of adhesive membrane fouling.
Collapse
Affiliation(s)
- Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yingbo Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|