1
|
Wang X, Ruan C, Shen C, Liao J, Wang D, Alvarez PJJ, Yu P. Synergistic Treatment of Reverse Osmosis Membrane Biofouling with Quorum Quenching Bacteria and Hitchhiking Phages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5647-5660. [PMID: 39945492 DOI: 10.1021/acs.est.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Biofilm formation, which is facilitated by quorum sensing (QS), significantly impairs the performance of pressure-driven membrane systems in water treatment. Herein, we present a quorum quenching (QQ)-phage phoresy system to control biofouling by disrupting QS-mediated interactions. This system, which is composed of the QQ bacterium Paenarthrobacter nicotinovorans as carriers and hitchhiking lytic phages infecting Pseudomonas aeruginosa with active QS systems, significantly decreased QS signal levels, inhibited the extracellular polymeric substance (EPS), and reduced bacterial abundance in mature biofilms. Transcriptomic analysis revealed that phage treatment upregulated QS and EPS synthesis genes in P. aeruginosa, but the QQ bacteria downregulated QS-related genes, weakening the bacterial EPS secretion and antiviral systems and facilitating phages to infect and lyse the target bacteria. Metabolomic profiling corroborated that the phoresy system disrupted pathways critical to biofilm stability, including the tricarboxylic acid cycle, carbohydrate metabolism, and amino acid metabolism. In off-site membrane cleaning experiments, the phoresy system promoted P. nicotinovorans colonization and replaced the niche of P. aeruginosa on the membrane surface, which restored membrane flux (i.e., 90% recovery in severely biofouling systems). Operation studies showed that the phoresy system reduced fouling rates, extended the membrane lifespan, and maintained salt rejection performance for reverse osmosis (RO) membrane systems. These findings highlight the potential of the QQ bacterium-phage system as a sustainable alternative to conventional chemical treatments that damage polymeric membranes.
Collapse
Affiliation(s)
- Xinjie Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chujin Ruan
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Chaofeng Shen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering and Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
2
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
4
|
Wang YC, Lv YH, Wang C, Deng Y, Lin YT, Jiang GY, Hu XR, Crittenden JC. Stochastic processes shape microbial community assembly in biofilters: Hidden role of rare taxa. BIORESOURCE TECHNOLOGY 2024; 402:130838. [PMID: 38740312 DOI: 10.1016/j.biortech.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Stochastic and deterministic processes are the major themes governing microbial community assembly; however, their roles in bioreactors are poorly understood. Herein, the mechanisms underlying microbial assembly and the effect of rare taxa were studied in biofilters. Phylogenetic tree analysis revealed differences in microbial communities at various stages. Null model analysis showed that stochastic processes shaped the community assembly, and deterministic processes emerged only in the inoculated activated sludge after domestication. This finding indicates the dominant role of stochastic factors (biofilm formation, accumulation, and aging). The Sloan neutral model corroborated the advantages of stochastic processes and mainly attributed these advantages to rare taxa. Cooccurrence networks revealed the importance of rare taxa, which accounted for more than 85% of the keystones. Overall, these results provide good foundations for understanding community assembly, especially the role of rare taxa, and offer theoretical support for future community design and reactor regulation.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
5
|
Zhang Q, Zhou H, Jiang P, Wu L, Xiao X. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133942. [PMID: 38452675 DOI: 10.1016/j.jhazmat.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
6
|
Oliveira IM, Gomes IB, Simões LC, Simões M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. WATER RESEARCH 2024; 253:121273. [PMID: 38359597 DOI: 10.1016/j.watres.2024.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) is responsible for water quality deterioration and a possible source of public health risks. Different factors impact the biological stability of drinking water (DW) in the distribution networks, such as the presence and concentration of nutrients, water temperature, pipe material composition, hydrodynamic conditions, and levels of disinfectant residual. This review aimed to evaluate the current state of knowledge on strategies for DW biofilm disinfection through a qualitative and quantitative analysis of the literature published over the last decade. A systematic review method was performed on the 562 journal articles identified through database searching on Web of Science and Scopus, with 85 studies selected for detailed analysis. A variety of disinfectants were identified for DW biofilm control such as chlorine, chloramine, UV irradiation, hydrogen peroxide, chlorine dioxide, ozone, and others at a lower frequency, namely, electrolyzed water, bacteriophages, silver ions, and nanoparticles. The disinfectants can impact the microbial communities within biofilms, reduce the number of culturable cells and biofilm biomass, as well as interfere with the biofilm matrix components. The maintenance of an effective residual concentration in the water guarantees long-term prevention of biofilm formation and improves the inactivation of detached biofilm-associated opportunistic pathogens. Additionally, strategies based on multi-barrier processes by optimization of primary and secondary disinfection combined with other water treatment methods improve the control of opportunistic pathogens, reduce the chlorine-tolerance of biofilm-embedded cells, as well as decrease the corrosion rate in metal-based pipelines. Most of the studies used benchtop laboratory devices for biofilm research. Even though these devices mimic the conditions found in real DWDS, future investigations on strategies for DW biofilm control should include the validity of the promising strategies against biofilms formed in real DW networks.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
7
|
Chen T, Zhang S, Yang J, Li Y, Kogure E, Zhu Y, Xiong W, Chen E, Shi G. Metabarcoding Analysis of Microorganisms Inside Household Washing Machines in Shanghai, China. Microorganisms 2024; 12:160. [PMID: 38257987 PMCID: PMC10819172 DOI: 10.3390/microorganisms12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Washing machines are one of the tools that bring great convenience to people's daily lives. However, washing machines that have been used for a long time often develop issues such as odor and mold, which can pose health hazards to consumers. There exists a conspicuous gap in our understanding of the microorganisms that inhabit the inner workings of washing machines. In this study, samples were collected from 22 washing machines in Shanghai, China, including both water eluted from different parts of washing machines and biofilms. Quantitative qualitative analysis was performed using fluorescence PCR quantification, and microbial communities were characterized by high-throughput sequencing (HTS). This showed that the microbial communities in all samples were predominantly composed of bacteria. HTS results showed that in the eluted water samples, the bacteria mainly included Pseudomonas, Enhydrobacter, Brevibacterium, and Acinetobacter. Conversely, in the biofilm samples, Enhydrobacter and Brevibacterium were the predominant bacterial microorganisms. Correlation analysis results revealed that microbial colonies in washing machines were significantly correlated with years of use and the type of detergent used to clean the washing machine. As numerous pathogenic microorganisms can be observed in the results, effective preventive measures and future research are essential to mitigate these health problems and ensure the continued safe use of these household appliances.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shu Zhang
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Juan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Eiichi Kogure
- Kao Corporation, 1334, Minato, Wakayama 640-8580, Japan
| | - Ye Zhu
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Weiqi Xiong
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Enhui Chen
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Ramos P, Honda R, Hoek EMV, Mahendra S. Carbon/nitrogen ratios determine biofilm formation and characteristics in model microbial cultures. CHEMOSPHERE 2023; 313:137628. [PMID: 36565767 DOI: 10.1016/j.chemosphere.2022.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.
Collapse
Affiliation(s)
- Pia Ramos
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA.
| |
Collapse
|