1
|
Meher A, Palai A, Panda NR, Pati SP, Sahu D. Synthesis of zinc oxide/bismuth oxide nanocomposite photocatalyst for visible light-assisted degradation of synthetic dyes and antibacterial application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-024-35804-3. [PMID: 39775499 DOI: 10.1007/s11356-024-35804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues. Sonochemical synthesis route was adopted to synthesize the nanocomposite of zinc oxide/bismuth oxide (ZnO-Bi2O3) along with pure ZnO and Bi2O3. X-ray diffraction investigation was performed to analyze the crystallographic structure and confirmed the formation of the composite. High-resolution transmission electron microscopic analysis showed that the particle size of the composite to be in 20 to 55 nm range with the formation of heterojunction at ZnO/Bi2O3 interface. Fourier transformed infrared spectroscopic and micro Raman studies of the nanocomposite sample helped to detect the presence of stretching vibrations linked with Zn and Bi ions. X-ray photoelectron spectroscopy study revealed the chemical constitution and electronic states of the nanocomposite sample displaying the Zn 2p, Bi 4f, and O 1 s spectral lines. Investigation on the photocatalytic efficiency of the samples was done and the results showed an appreciable increase in photodegradation efficiency for the composite sample in degrading methylene blue (93.24%) and Congo red (92.47%) dyes in 180 min. The effect of pH, photocatalyst amount, and dye concentration on the efficiency of degradation was also been examined. Two primary causes of the enhanced performance of the composite are the generation of hydroxyl radicals (OH•) and the suppression of carrier recombination which is initiated by the synergistic combination of the two metal oxides in the nanocomposite. The nanocomposite sample was found to be stable and reusable for its effective use in environmental cleanup. By using the disk diffusion process, the antibacterial potential of the samples was analyzed and it was discovered that the nanocomposite showed an exceedingly superior antibacterial performance than the pristine samples in preventing the growth of two strains of bacteria, i.e., Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Ankita Meher
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Amrita Palai
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
- Kujang College, Kujang, Jagatsinghpur, Odisha, India
| | - Nihar Ranjan Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khurda, Odisha, India
| | | | - Dojalisa Sahu
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Wei X, Zhu N, Li F, Li X, Wu P. Efficient low-strength diclofenac elimination via adsorption-concentration and peroxydisulfate activation mineralization by distinct pretreated biocarbon composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122393. [PMID: 39226810 DOI: 10.1016/j.jenvman.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Sodium diclofenac (DCF) widely exists in actual water matrices, which can negatively impact ecosystems and aquatic environments even at low-strength. Herein, the adsorption-concentration-mineralization process was innovatively constructed for low-strength DCF elimination by freeze-dried biocarbon and oven-dried biocarbon coupled with cobalt oxide composites derived from the same waste biomass. Surprisingly, low-strength DCF of 0.5 mg/L was adsorbed rapidly and enriched to high-strength DCF under light with a concentration efficiency of 99.67 % by freeze-dried biocarbon. Subsequently, the concentrated DCF was economically mineralized by bifunctional oven-dried biocarbon coupled with cobalt oxide composites for peroxydisulfate (PDS) activation with full PDS activation and 76.11 % mineralization efficiency. Compared with direct low-strength DCF oxidation, adsorption-concentration-mineralization consumed less energy and none PDS residues. Mechanisms confirmed that DCF was adsorbed by freeze-dried biocarbon through hydrogen bonds and π-π stacking interactions, which were switched on due to electron-induced effect by light in DCF desorption-concentration. Furthermore, nonradical pathway (electron transfer) and radical pathway (SO4•-) were involved in efficient PDS activation by oven-dried biocarbon coupled with cobalt oxide composites for concentrated DCF mineralization, and the former was more prominent, in which graphitic carbon, cobalt redox cycle and carboxy groups were the main active sites. Overall, an energy-efficient strategy was proposed for elimination of low-strength DCF in real water matrices.
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xinyu Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China
| |
Collapse
|
3
|
Ran X, Chen Z, Ji H, Ma Z, Xie Y, Li W, Zhang J. Controlling size and distribution of Au nano-particles on C3N4 for high-efficiency photocatalytic hydrogen production. J Chem Phys 2024; 161:114707. [PMID: 39291690 DOI: 10.1063/5.0226926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
With advantages such as low cost, high stability, and ease of production, visible light photocatalytic C3N4 with a unique microscopic layered structure holds significant potential for development. However, its hydrogen production efficiency remains low due to the pronounced recombination of photo-generated charge carriers and limited surface reaction sites. Normally, the photocatalytic performance of C3N4 can be enhanced by loading noble metals with surface plasmon resonance. It is worth noting that the size of noble metal nanoparticles has a great influence on photocatalytic performance. In this study, accurate controlling of the size and distribution of Au nanoparticles was achieved on the surface of C3N4 by introducing amino groups to improve photocatalytic performance. Results show that uniformly distributed Au nanoparticles in the range of 2-6 nm can be obtained on C3N4 with a remarkable enhancement of hydrogen production efficiency, which is about 114 times the property of pure C3N4. The small-sized and uniformly distributed Au nanoparticles can provide more reaction sites and increase the separation of photo-generated charge carriers, in turn improving Au/NH3-C3N4 photocatalytic hydrogen release rate to 6.85 mmol g-1 h-1. This work offers a facile way to enhance photocatalytic performance by controlling the size of metal nanoparticles on C3N4 precisely.
Collapse
Affiliation(s)
- Xunan Ran
- School of Physics, Beihang University, Beijing 100191, China
| | - Zhihua Chen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
| | - Hongzhou Ji
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
| | - Zhaoyu Ma
- School of Physics, Beihang University, Beijing 100191, China
| | - Yuxi Xie
- School of Physics, Beihang University, Beijing 100191, China
| | - Wenping Li
- School of Physics, Beihang University, Beijing 100191, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Shi J, Yang T, Zhao T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Insights on the efficiency and contribution of single active species in photocatalytic degradation of tetracycline: Priority attack active sites, intermediate products and their toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121970. [PMID: 39106792 DOI: 10.1016/j.jenvman.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, 030024, PR China
| |
Collapse
|
5
|
Yu J, Hasi QM, Guo Y, Song L, Yin M, Ma L, Han Z, Xiao C, Zhang Y, Chen L. Porphyrin-Based Conjugated Microporous Polymer Loaded with Nanoscale Zerovalent Iron for the Degradation of Organic Pollutants under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4739-4750. [PMID: 38373152 DOI: 10.1021/acs.langmuir.3c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.
Collapse
Affiliation(s)
- Jiale Yu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Qi-Meige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Yuyan Guo
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lingyan Song
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Min Yin
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lina Ma
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Zhichao Han
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Chaohu Xiao
- Center of Experiment, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Yuhan Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| |
Collapse
|
6
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
7
|
Xiao X, Guo R, Qi Y, Wei J, Wu N, Zhang S, Qu R. Photocatalytic degradation of alkyl imidazole ionic liquids by TiO 2 nanospheres under simulated solar irradiation: Transformation behavior, DFT calculations and promoting effects of alkali and alkaline earth metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132616. [PMID: 37757564 DOI: 10.1016/j.jhazmat.2023.132616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
In this study, TiO2 nanospheres prepared by the sol-gel method were found to efficiently catalyze the photodegradation of 1-butyl-2,3-dimethylimidazolium bromide salt ([BMMIm]Br) under simulated solar irradiation through the main attack of hydroxyl radicals (•OH). The promoting effect of alkali metal (Li+→Cs+) and alkaline earth metal ions (Mg2+→Ba2+) was particularly emphasized. In-situ EPR tests showed that the introduction of alkali and alkaline earth metal ions could enhance the formation of •OH thus leading to a 7%-30.3% increase in the degradation efficiency of. [BMMIm]+. Moreover, the removal efficiency of [BMMIm]+ still reached > 96.19% in four real waters. A total of 23 products of [BMMIm]Br were detected, and hydroxyl substitution, bond breaking, direct oxidation and ring opening were considered as the main reactions during the photocatalytic degradation process. The results of toxicity evaluation showed that hydroxylation was a reaction process of increasing toxicity, while the bond breaking reaction had great detoxification capacity for [BMMIm]+. These findings may enhance our understanding on the effects of alkali or alkaline earth metal ions on the photocatalytic activity of TiO2, which could also provide reference for the efficient and green removal of alkylimidazolium ionic liquids in waters.
Collapse
Affiliation(s)
- Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
8
|
Zhu X, Li Z, Fang F, E Y, Chen P, Li L, Qian K. Coral-like, self-assembled, and spatially bounded Ag nano-particles on franzinite zeolite composite sensor toward accurate, synergetic, and ultra-trace sulfadiazine detection. Anal Chim Acta 2023; 1276:341619. [PMID: 37573109 DOI: 10.1016/j.aca.2023.341619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
A coral-like Ag@FRA zeolite nanocomposite sensor reveals high sensitivity toward sulfadiazine (SDZ) in a dual detection of fluorescence and electrochemistry. The sensor has been as-synthesized in the hydrothermal condition through a one-pot self-assembly process in which the high crystalline Ag nanoparticles (NPs) are closely arranged and stacked on the nanosized surface cage window of the FRA (Franzinite) zeolite. Strong ultrasound can drive the coral-like composite release Ag nanoparticles whose distribution range mainly from 10 to 12 nm lead to the purple fluorescence in an emission spectrum. In sea water, the fluorescence increases linearly in the SDZ concentration range of 5 × 10-18-5 × 10-10 M. Furthermore, the LOD (limit of detection) reaches 1.4 × 10-22 M by the spatial confinement effect of the coral-liked FRA cage structure in CV (cyclic voltammetry) method at the characteristic potential peak position of 0.1 V vs. SCE. The theoretical calculation also confirms that the FRA cage structure matches well with the SDZ molecules. Further studies indicate the generation of a novel stable composite sensor with high specificity, good recovery and repeatability, which depends on the induction of silver ions upon the artificial synthesis of FRA.
Collapse
Affiliation(s)
- Xinyu Zhu
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Zhuozhe Li
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Fang Fang
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yifeng E
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Li Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry in Jilin University, Changchun, 130012, PR China.
| | - Kun Qian
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
9
|
Shen L, Wang Z, Gong Q, Zhang Y, Wang J. Photocatalytic Synthesis of Ultrafine Pt Electrocatalysts with High Stability Using TiO 2 -Decorated N-Doped Carbon as Composite Support. CHEMSUSCHEM 2023; 16:e202300393. [PMID: 37248649 DOI: 10.1002/cssc.202300393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 05/31/2023]
Abstract
Commercial Pt/C (Com. Pt/C) electrocatalysts are considered optimal for oxygen reduction and hydrogen evolution reactions (ORR and HER). However, their high Pt content and poor stability restrict their large-scale application. In this study, photocatalytic synthesis was used to reduce ultrafine Pt nanoparticles in-situ on a composite support of TiO2 -decorated nitrogen-doped carbon (TiO2 -NC). The nitrogen-doped carbon had a large surface area and electronic effects that ensured the uniform dispersion of TiO2 nanoparticles to form a highly photoactive and stable support. TiO2 -NC served as a composite support that enhanced the dispersibility and stability of ultrafine Pt electrocatalyst, owing to the presence of N sites and the strong metal-support interaction. Relative to Com. Pt/C, the as-obtained Pt/TiO2 -NC had positive shifts of 44 and 10 mV in the ORR half-wave potential and HER overpotential at -10 mA cm-2 , respectively. After an accelerated durability test, Pt/TiO2 -NC had lower losses in electrochemical specific area (0.7 %) and electrocatalytic activity (0 mV shift) than Com. Pt/C (25.6 %, 22 mV shift). These results indicate that the developed strategy enabled the facile synthesis and stabilization of ultrafine Pt nanoparticles, which improved the utilization efficiency and long-term stability of Pt-based electrocatalysts.
Collapse
Affiliation(s)
- Le Shen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zemei Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qi Gong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jingyu Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Wu C, Tang Q, Zhang S, Lv K, Fuku X, Wang J. Surface Modification of TiO 2 by Hyper-Cross-Linked Polymers for Efficient Visible-Light-Driven Photocatalytic NO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307316 DOI: 10.1021/acsami.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the removal of air pollutants such as nitric oxides without chemical addition. However, the low specific surface area and adsorption capacity of common photocatalysts restrict the surface reactions with NO at the ppb-level. In this study, imidazolium-based hyper-cross-linked polymer (IHP) was introduced to modify the surface of TiO2 to construct a porous TiO2/IHP composite photocatalyst. The as-prepared composite with hierarchical porous structure achieves a larger specific surface area as 309 m2/g than that of TiO2 (119 m2/g). Meanwhile, the wide light absorption range of the polymer has brought about the strong visible-light absorption of the TiO2/IHP composite. In consequence, the composite photocatalyst exhibits excellent performance toward NO oxidation at a low concentration of 600 ppb under visible-light irradiation, reaching a removal efficiency of 51.7%, while the generation of the toxic NO2 intermediate was suppressed to less than 1 ppb. The enhanced NO adsorption and the suppressed NO2 generation on the TiO2/IHP surface were confirmed by in situ monitoring technology. This work demonstrates that the construction of a porous structure is an effective approach for efficient NO adsorption and photocatalytic oxidation.
Collapse
Affiliation(s)
- Can Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sushu Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, P.R. China
| | - Xolile Fuku
- College of Science, Engineering and Technology, University of South Africa, Pretoria 1710, South Africa
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Liu W, Li B, Zhao J. Efficient adsorption and photodegradation of various organic dyes over B-doped TiO2-x. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
12
|
Fang X, Feng C, Li T, Wang Y, Zhu S, Ren H, Huang H. g-C 3N 4/polyvinyl alcohol-sodium alginate aerogel for removal of typical heterocyclic drugs from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121057. [PMID: 36634858 DOI: 10.1016/j.envpol.2023.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Heterocyclic drugs (HCDs) detected at high frequencies in wastewater have raised great concerns and their advanced removal has been the hotspot for safe water reuse in recent years. Two-dimensional graphitic carbon nitride (g-C3N4) and its photocatalytic systems are increasingly emerging, however, there are inevitable drawbacks of stacking and difficulty in recycling, resulting in decreased pollutant removal and limited application. Herein, for the first time, this paper reported a three-dimensional g-C3N4/polyvinyl alcohol-sodium alginate aerogel (g-C3N4/PVA-SA aerogel) photocatalyst synthesized by ultrasonic exfoliation and in-situ polymerization for typical HCDs (sulfadiazine (SDZ), sulfamethoxazole (SMX), and carbamazepine (CBZ)) removal in water. The reduced stacking of g-C3N4 dispersed in PVA-SA aerogel was achieved as revealed by scanning electron microscopy (SEM) and X-ray diffractometer (XRD) analysis, and g-C3N4/PVA-SA aerogel was observed to possess encouraging degradation efficiencies and rates for SDZ (100%, 0.0249 min-1), SMX (100%, 0.1762 min-1) and CBZ (69.8%, 0.0056 min-1), which were improved by 50%-60% and 133%-216% compared to those of g-C3N4, respectively. Meanwhile, environmental impact factors such as pH and coexisting ions had less impact on the degradation of SDZ and SMX by g-C3N4/PVA-SA aerogel. The novel aerogel also had a good recyclability, with less than 5% reduction in degradation efficiency after five cycles observed. The photodegradation of SDZ, SMX and CBZ was confirmed to be driven by ⋅O2- and h+ through scavenger-quenching experiments. The new low carbon and recyclable g-C3N4/PVA-SA aerogel reported in this study indicated a good potential for efficient removal of HCDs from water, which provides an alternative strategy for advanced purification and safe reuse of wastewater.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Chuanzhe Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Shanshan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|