1
|
Perez-Botella E, Murillo-Acevedo YS, Bastos de Freitas B, Lauersen KJ, Grande CA. Waste Algal Biomass as a Binder for Shaping Technical Adsorbents. ACS OMEGA 2025; 10:17735-17743. [PMID: 40352485 PMCID: PMC12059915 DOI: 10.1021/acsomega.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Spray-dried biomass from genetically engineered Chlamydomonas reinhardtii can be used as a binder to extrude alumina adsorbents. The proposed process involves heating at a moderate temperature (180 °C), replacing inorganic binders that require high sintering temperatures. The transformed genes present in the algal biomass were no longer detectable after the thermal treatment. Binder contents above 15% led to successful extrusion. Extrudability was found to correlate with the viscoelasticity coefficient, tan(δ), obtained from independent rheometric measurements. The extrudates have crush strengths of >27 N, complying with industrial requirements. The water vapor adsorption capacity in shaped alumina adsorbents was 7.5 mol/kg, indicating a 30% reduction compared with alumina powder. The mechanical and adsorption properties of the formed adsorbents remain unaltered after a 1 week immersion in water, ethanol, or n-heptane and after 10 gas-phase adsorption/desorption cycles. The results demonstrate that waste biomass from algal processes can be effectively used to produce functional industrial adsorbents.
Collapse
Affiliation(s)
- Eduardo Perez-Botella
- Intensification
of Materials and Processes Laboratory, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yesid S. Murillo-Acevedo
- Intensification
of Materials and Processes Laboratory, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Bárbara Bastos de Freitas
- Bioengineering
Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Kyle J. Lauersen
- Bioengineering
Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Carlos A. Grande
- Intensification
of Materials and Processes Laboratory, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
- Chemical
Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
2
|
Lakshmikandan M, Li M. Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125018. [PMID: 40106994 DOI: 10.1016/j.jenvman.2025.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.
Collapse
Affiliation(s)
- Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Gutiérrez S, Overmans S, Wellman GB, Lauersen KJ. Compartmentalized Sesquiterpenoid Biosynthesis and Functionalization in the Chlamydomonas reinhardtii Plastid. Chembiochem 2025; 26:e202400902. [PMID: 39589357 PMCID: PMC11875560 DOI: 10.1002/cbic.202400902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Terpenoids play key roles in cellular metabolism and can have specialized functions. Their heterologous production in microbial hosts offers an alternative to natural extraction. Here, we developed a subcellular engineering approach in the model green alga Chlamydomonas reinhardtii by targeting both sesquiterpenoid synthases and cytochrome P450s (CYPs) to the plastid, exploiting its photosynthetic electron transport chain to drive CYP-mediated oxidation without reductase partners. Nuclear-encoded sesquiterpenoid synthases were expressed with farnesyl pyrophosphate synthase fusions and targeted to the plastid, while CYPs were modified for soluble localization in the plastid stroma by removing transmembrane domains. The plastid environment supported hydroxylation, epoxidation, and oxidation reactions, with functionalization efficiencies reaching 80 % of accumulated products. Carbon source availability influenced product ratios, revealing metabolic flexibility in the engineered pathways. Overall sesquiterpenoid yields ranged between 250-2500 μg L-1 under screening conditions, establishing proof-of-concept for using plastid biochemistry in complex terpenoid biosynthesis. Living two-phase terpenoid extractions with different perfluorinated solvents revealed variable performances based on sesquiterpenoid functionalization and solvent type. This work demonstrates that photosynthetic electron transport can drive CYP-mediated functionalization in engineered subcellular compartments. However, improvements in photobioreactor cultivation concepts will be required to facilitate the use of algal chassis for scaled production.
Collapse
Affiliation(s)
- Sergio Gutiérrez
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Gordon B. Wellman
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kyle J. Lauersen
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
4
|
Calatrava V, Gonzalez-Ballester D, Dubini A. Microalgae for bioremediation: advances, challenges, and public perception on genetic engineering. BMC PLANT BIOLOGY 2024; 24:1261. [PMID: 39731038 PMCID: PMC11674212 DOI: 10.1186/s12870-024-05995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment. Furthermore, the biomass obtained from the wastewater treatment can be used in different applications, having a positive economic impact. This review describes the potential of microalgae as a biological wastewater remediation tool, including the use of genetically engineered strains. Their current industrial utilization and their untapped commercial potential in terms of bioremediation are also examined. Finally, this work discusses how microalgal biotechnology is perceived by the public and governments, analyses the potential risks of microalgae to the environment, and examines standard procedures that can be implemented for the safe biocontainment of large-scale microalgae cultures.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain
| | - David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain
| | - Alexandra Dubini
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.
| |
Collapse
|
5
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Seger M, Mammadova F, Villegas-Valencia M, Bastos de Freitas B, Chang C, Isachsen I, Hemstreet H, Abualsaud F, Boring M, Lammers PJ, Lauersen KJ. Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D. Metab Eng Commun 2023; 17:e00226. [PMID: 37449053 PMCID: PMC10336515 DOI: 10.1016/j.mec.2023.e00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. Cyanidioschyzon merolae 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. C. merolae maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal β-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express Chlamydomonas reinhardtii (Cr) sourced enzymes by fusing native C. merolae transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. CrBKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of CrBKT with CrCHYB generated astaxanthin as the major carotenoid in C. merolae. Unlike green algae and plants, ketocarotenoid accumulation in C. merolae did not reduce total carotenoid contents, but chlorophyll a reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of C. merolae 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.
Collapse
Affiliation(s)
- Mark Seger
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Fakhriyya Mammadova
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Melany Villegas-Valencia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bárbara Bastos de Freitas
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Clarissa Chang
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Iona Isachsen
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Haley Hemstreet
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Fatimah Abualsaud
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Malia Boring
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Peter J. Lammers
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Kyle J. Lauersen
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Michailidou F. The Scent of Change: Sustainable Fragrances Through Industrial Biotechnology. Chembiochem 2023; 24:e202300309. [PMID: 37668275 DOI: 10.1002/cbic.202300309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 09/06/2023]
Abstract
Current environmental and safety considerations urge innovation to address the need for sustainable high-value chemicals that are embraced by consumers. This review discusses the concept of sustainable fragrances, as high-value, everyday and everywhere chemicals. Current and emerging technologies represent an opportunity to produce fragrances in an environmentally and socially responsible way. Biotechnology, including fermentation, biocatalysis, and genetic engineering, has the potential to reduce the environmental footprint of fragrance production while maintaining quality and consistency. Computational and in silico methods, including machine learning (ML), are also likely to augment the capabilities of sustainable fragrance production. Continued innovation and collaboration will be crucial to the future of sustainable fragrances, with a focus on developing novel sustainable ingredients, as well as ethical sourcing practices.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
8
|
Yahya RZ, Wellman GB, Overmans S, Lauersen KJ. Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metab Eng Commun 2023; 16:e00221. [PMID: 37006831 PMCID: PMC10063407 DOI: 10.1016/j.mec.2023.e00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga Chlamydomonas reinhardtii. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the Ipomoea batatas IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.
Collapse
|
9
|
Villegas-Valencia M, González-Portela RE, de Freitas BB, Al Jahdali A, Romero-Villegas GI, Malibari R, Kapoore RV, Fuentes-Grünewald C, Lauersen KJ. Cultivation of the polyextremophile Cyanidioschyzon merolae 10D during summer conditions on the coast of the Red Sea and its adaptation to hypersaline sea water. Front Microbiol 2023; 14:1157151. [PMID: 37152750 PMCID: PMC10158843 DOI: 10.3389/fmicb.2023.1157151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
The west coast of the Arabian Peninsula borders the Red Sea, a water body which maintains high average temperatures and increased salinity compared to other seas or oceans. This geography has many resources which could be used to support algal biotechnology efforts in bio-resource circularity. However, summer conditions in this region may exceed the temperature tolerance of most currently cultivated microalgae. The Cyanidiophyceae are a class of polyextremophilic red algae that natively inhabit acidic hot springs. C. merolae 10D has recently emerged as an interesting model organism capable of high-cell density cultivation on pure CO2 with optimal growth at elevated temperatures and acidic pH. C. merolae biomass has an interesting macromolecular composition, is protein rich, and contains valuable bio-products like heat-stable phycocyanin, carotenoids, β-glucan, and starch. Here, photobioreactors were used to model C. merolae 10D growth performance in simulated environmental conditions of the mid-Red Sea coast across four seasons, it was then grown at various scales outdoors in Thuwal, Saudi Arabia during the Summer of 2022. We show that C. merolae 10D is amenable to cultivation with industrial-grade nutrient and CO2 inputs outdoors in this location and that its biomass is relatively constant in biochemical composition across culture conditions. We also show the adaptation of C. merolae 10D to high salinity levels of those found in Red Sea waters and conducted further modeled cultivations in nutrient enriched local sea water. It was determined that salt-water adapted C. merolae 10D could be cultivated with reduced nutrient inputs in local conditions. The results presented here indicate this may be a promising alternative species for algal bioprocesses in outdoor conditions in extreme coastal desert summer environments.
Collapse
Affiliation(s)
- Melany Villegas-Valencia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ricardo E. González-Portela
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bárbara Bastos de Freitas
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdulaziz Al Jahdali
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriel I. Romero-Villegas
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Raghdah Malibari
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rahul Vijay Kapoore
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Claudio Fuentes-Grünewald
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
de Carvalho JC, de Souza Vandenberghe LP, Sydney EB, Karp SG, Magalhães AI, Martinez-Burgos WJ, Medeiros ABP, Thomaz-Soccol V, Vieira S, Letti LAJ, Rodrigues C, Woiciechowski AL, Soccol CR. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Sugarcane ethanol production generates about 360 billion liters of vinasse, a liquid effluent with an average chemical oxygen demand of 46,000 mg/L. Vinasse still contains about 11% of the original energy from sugarcane juice, but this chemical energy is diluted. This residue, usually discarded or applied in fertigation, is a suitable substrate for anaerobic digestion (AD). Although the technology is not yet widespread—only 3% of bioethanol plants used it in Brazil in the past, most discontinuing the process—the research continues. With a biomethane potential ranging from 215 to 324 L of methane produced by kilogram of organic matter in vinasse, AD could improve the energy output of sugarcane biorefineries. At the same time, the residual digestate could still be used as an agricultural amendment or for microalgal production for further stream valorization. This review presents the current technology for ethanol production from sugarcane and describes the state of the art in vinasse AD, including technological trends, through a recent patent evaluation. It also appraises the integration of vinasse AD in an ideal sugarcane biorefinery approach. It finally discusses bottlenecks and presents possible directions for technology development and widespread adoption of this simple yet powerful approach for bioresource recovery.
Collapse
Affiliation(s)
- Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | | | - Eduardo Bittencourt Sydney
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Antonio Irineudo Magalhães
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Walter José Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Luiz Alberto Junior Letti
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| |
Collapse
|