1
|
Fang J, Wang D, Wilkin R, Su C. Realistic and field scale applications of biochar for water remediation: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125524. [PMID: 40334406 DOI: 10.1016/j.jenvman.2025.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Biochar has received increasing attention in recent years as a potentially cost-competitive adsorbent for removing various contaminants from surface water and groundwater. However, most published studies have been conducted in the laboratory on a bench scale. Laboratory conditions do not necessarily reflect the complex, heterogeneous, and dynamic field conditions of actual contaminated surface water and groundwater environments. There is a lack of comprehensive literature review regarding the performance of biochar for contaminant removal, especially under realistic field conditions and at field scale. Here, we evaluated 31 studies on realistic applications of biochar for water remediation by searching the keywords: pilot scale, field scale, and mesocosm scale combined with biochar and water remediation. Biochar was found to be incorporated into a variety of water remediation technologies for treating both inorganic and organic contaminants, such as nutrients, heavy metals, pesticides, and pharmaceuticals in polluted waters and wastewaters. Also, biochar showed the potential to be effective on a field scale or in realistic remediation technologies, although it is not always as effective as other sorbents, such as activated carbon (AC). This is partially because AC has better physicochemical characteristics such as higher surface area and more micropores. Effectiveness for contaminant removal varies according to the targeted contaminants, the type and dosage of biochar used, and the treatment technology incorporating biochar. Finally, knowledge gaps and future research areas are identified. For example, more field scale studies are needed to test the effectiveness of biochar as an adsorbent under realistic conditions to pinpoint specific characteristics suitable for target contaminants. Physicochemical characteristics of the biochar can also change over time during the treatment process due to weathering, which may negatively affect the treatment performance. The effects of scaling up production on biochar quality should therefore also be further investigated, as physicochemical characteristics can be affected by varying the synthesis conditions. Regeneration and disposal of spent biochar is another active research area to determine the overall treatment costs.
Collapse
Affiliation(s)
- June Fang
- Oak Ridge Institute for Science and Education Fellow at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Richard Wilkin
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| |
Collapse
|
2
|
Seintos T, Barka E, Statiris E, Koukoura A, Noutsopoulos C, Mamais D, Malamis S. Investigating the application of novel filling materials in Vertical Subsurface Flow Constructed Wetlands for the treatment of anaerobic effluents originating from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124211. [PMID: 39854905 DOI: 10.1016/j.jenvman.2025.124211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%. The COD removal was affected by granulometry, porosity and the active biofilm formation, since biochar removal was slightly higher (up to 93% ± 3%) than that of sand and recycled glass (up to 86% ± 4% and 85% ± 5%, respectively) and significantly higher than that of gel beads (up to 68% ± 8%). The higher porosity of biochar affected NH4-N removal in which adsorption had a greater and longer effect. The overall NH4-N removal ranged between 84% ± 11% and 99% ± 1% for all materials. Sand, biochar and glass achieved an 80% average removal of selected contaminants of emerging concern (CECs), including ibuprofen (IBU), naproxen (NPX), triclosan (TCS), bisphenol A (BPA), diclofenac (DCF) and ketoprofen (KFN). The biochar and recycled glass are effective in treating UASB effluent and enable the treated wastewater reuse, since, high compliance rates with the EU Regulation 2020/741 - Class A were achieved (>98% for TSS, >88% for BOD5 and 100% for turbidity).
Collapse
Affiliation(s)
- Taxiarchis Seintos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.
| | - Evridiki Barka
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece
| | - Evangelos Statiris
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece
| | - Asimina Koukoura
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece
| |
Collapse
|
3
|
Donato MA, de Oliveira Souza A, Pacheco A, de Carvalho Silva L, Svenar S, Nagalli A, Passig FH, Brasil Bernardelli JK, Querne de Carvalho K. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. CHEMOSPHERE 2025; 370:143941. [PMID: 39681191 DOI: 10.1016/j.chemosphere.2024.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.4 LO2 min-1) and CW-2 (1.4 LO2 min-1) were fed with synthetic wastewater in sequencing-batch mode (cycles 48-48-72 h) and intermittently aerated for 1 h, followed by 7 h without aeration for 377 days. Combined with the intensification strategy, the use of planted free-floating macrophytes and concrete-based material (emergent) as filtering media stand out as the innovation and originality aspects of this study. Despite the hormone addition, intensifying aeration enhanced the efficiencies since CW-1 achieved the highest removals with 91% COD, 77% TN, 74% TAN, 60% nitrate, and 97% TP in Stage I (no hormone addition) and 90% COD, 80% TN, 93% TAN, 63% nitrate, and 82% TP in Stage II (with hormone addition). CW-1 achieved the highest removal efficiencies of E1 (84%), E2 (95%), and EE2 (73%). Conversely, the efficiencies decreased under the lower aeration rate (in CW-2) for all parameters. Macrophyte uptake and adsorption stood out for TN (>60.25%) and TP (>27.6%) removal as the main mechanisms in the VFCWs. The characteristics of AC favored ion exchange and precipitation, reinforcing the potential of this material as filtering media in VFCWs. Intensification of intermittent aeration combined with hormone addition diverse and riched the microbial community with the presence of Thauera, Lentimicrobium (denitrification), Candidatus Accumulibacter (phosphorus removal), Pseudomonas, Fusibacter, and Azoarcus (EE2 degradation). Intensifying intermittent aeration was an important strategy to enhance the simultaneous removal of nutrients and hormones in the VFCWs under the evaluated operational conditions.
Collapse
Affiliation(s)
- Mayra Alves Donato
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Amanda Pacheco
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Lucas de Carvalho Silva
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Silvana Svenar
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Tecnhology - Paraná (UTFPR) - Biology and Chemistry Academic Department. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Peng P, Yan X, Zhou X, Chen L, Li X, Miao Y, Zhao F. Enhancing degradation of antibiotic-combined pollutants by a hybrid system containing advanced oxidation and microbial treatment, a review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136300. [PMID: 39471633 DOI: 10.1016/j.jhazmat.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Antibiotics often co-exist with other pollutants, posing a significant threat to ecosystems. This review first examines the applications and limitations of microbial treatments for various types of antibiotic-combined pollutants. Then, it explores the mechanisms and application of hybrid systems that integrate advanced oxidation with microbial treatment, categorized into two-stage and intimately hybrid systems. Finally, the review highlights key knowledge gaps in hybrid systems and provides new insight into the removal of combined pollutants.
Collapse
Affiliation(s)
- Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yijing Miao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
5
|
Salmerón I, Núñez-Tafalla P, Venditti S, Hansen J. Biochar obtained from recovered cellulose and its mixture with conventional sources: Assessment of its potential for the removal of pollutants in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176357. [PMID: 39299337 DOI: 10.1016/j.scitotenv.2024.176357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yearly thousands of tons of cellulose, in the form of toilet paper, end up in the wastewater treatment plants (WWTP) through the sewage. Cellulose was recovered with a 0.35 mm sieve and processed obtaining three different pellets: pure cellulose, straw mix (50 % cellulose-50 % straw) and wood mix (50 % cellulose-50 % wood). Those materials were carbonized at 750 °C for 210 min producing non-activated biochar. Then, a part of those biochars was biologically activated by fermentation adding minerals, nutrients and a mixture of bacteria. All biochar versions were characterized, assessing the surface, porosity and adsorption capacity for a dye (indigo carmine) and a selection of 5 micropollutants (MPs): benzotriazole, carbamazepine, clarithromycin, DEET, and diclofenac. However, results showed that conventional analysis for adsorbents was not adequate for biologically activated materials since biofilm can obstruct the pores of the supporting material hindering the pollutants' adsorption. Therefore, the biological degradation of the pollutants by the microorganisms was also tested. Finally, biologically activated WOW-Biochar straw mix was the selected material to be further applied in constructed wetlands (CW) due to its higher average MPs removal capacity. Validation test at mesocosm scale demonstrates the suitability of the material as an admixture in CW, reaching a MPs removal rate higher than the 90 % regarding the WWTP inlet.
Collapse
Affiliation(s)
- I Salmerón
- University of Luxembourg, Faculty of Science, Technology and Medicine, Chair for Urban Water Management 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg.
| | - P Núñez-Tafalla
- University of Luxembourg, Faculty of Science, Technology and Medicine, Chair for Urban Water Management 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
| | - S Venditti
- University of Luxembourg, Faculty of Science, Technology and Medicine, Chair for Urban Water Management 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
| | - J Hansen
- University of Luxembourg, Faculty of Science, Technology and Medicine, Chair for Urban Water Management 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
| |
Collapse
|
6
|
Karki BK. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024; 10:e39848. [PMID: 39524858 PMCID: PMC11550652 DOI: 10.1016/j.heliyon.2024.e39848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater pose significant threats to both human health and aquatic ecosystems. Wastewater discharge from various sources is the primary cause of these contaminants, and proper treatment is essential for protecting the environment. Traditional treatment technologies are often too expensive and ineffective in removing PPCPs. Constructed wetlands (CWs) offer a sustainable, cost-efficient alternative for wastewater treatment, though their capability to eliminate PPCPs can vary based on multiple aspects. Recent studies highlight biochar-a carbon-rich material resultant from biomass pyrolysis-as a promising amendment to improve CW performance. However, there is a deficiency of proper literature reviews on using biochar in CWs specifically for PPCP removal. This review focuses on biochar's role in CWs and its effectiveness in removing PPCPs and enhancing microbial activity and nutrient cycling. A bibliometric analysis using Vosviewer software was used to assess the current research trends in the biochar-amended CWs to attenuate PPCPs. While biochar shows potential in eliminating PPCPs, challenges, such as optimizing its application and addressing long-term operational concerns for treating emerging pollutants like PPCPs. Future research should enhance biochar production and low-cost techniques for diverse groups of PPCPs and perform field trials to validate laboratory results under actual conditions exploring microbial-biochar and plant-biochar interactions. Addressing these challenges is crucial to advancing biochar-amended CWs and enhancing wastewater treatment on a global scale.
Collapse
Affiliation(s)
- Bhesh Kumar Karki
- Tribhuvan University, Institute of Engineering, Thapathali Campus, Department of Civil Engineering Kathmandu, 44600, Nepal
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
7
|
Chen L, Wang J, Zhu M, He R, Mu H, Ren H, Wu B. Quality evaluation parameter and classification model for effluents of wastewater treatment plant based on machine learning. WATER RESEARCH 2024; 268:122696. [PMID: 39489127 DOI: 10.1016/j.watres.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
With the growing consensus of emerging pollutants and biological toxicity risks in wastewater treatment plant (WWTP) effluents, traditional water quality management based on general chemical parameters no longer meets the new challenges. Here, a first-hand dataset containing 9 conventional parameters, 22 mental and inorganic ions, 25 biotoxicity parameters, and 54 emerging pollutants from effluents of 176 municipal WWTPs across China were measured. Four clustering algorithms and five classification algorithms were applied to 65 well-performing models to determine a novel evaluation parameter system. A total of 14 parameters were selected by semi-supervised machine learning, including TN, TP, NH4+-N, NO2--N, Se, SO42-, Caenorhabditis elegans body width, 72 hpf zebrafish embryo hatching rate, tetracycline, acetaminophen, gemfibrozil (Lopid), PFBA, PFHxA, and HFPO-DA. These parameters were then used to construct a Healthy Effluent Quality Index model (HEQi). The application efficiency of HEQi was compared with other common methods such as the Water Quality Index (WQI), Fuzzy Synthesized Evaluation (FSE), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in classifying 176 effluents. Results implicated that under the new evaluation criteria, the major task in North and Northeast China remains to reduce the conventional parameters, especially NO2--N. However, it is necessary to strengthen the removal of biotoxicity and emerging pollutants in parts of Central and Eastern China. This study offers new methodological tools and scientific insights for improving water quality assessment and safe discharge of wastewater.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Jiawei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, NO. 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
8
|
Zhao J, Han Y, Liu J, Li B, Li J, Li W, Shi P, Pan Y, Li A. Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173610. [PMID: 38815821 DOI: 10.1016/j.scitotenv.2024.173610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
During the process of cleaning aquaculture ponds, the drainage contributes significantly to antibiotic pollution in the surrounding water environment. Therefore, we conducted a study on the distribution of 26 antibiotics in 57 ponds within the Taihu Lake basin. The results revealed that the detection frequency of antibiotics ranged from 1.75 % to 80.7 %, with the overall detection concentrations ranging from 3.27 to 708.72 ng/L. Among them, the detection rate of 8 antibiotics exceeded 50 %. Regarding the spatial distribution, the concentration of antibiotics was relatively high in aquaculture ponds located in the Changzhou area, with the highest concentration reaching 708.72 ng/L. This observation is likely due to the large size and intensive breeding practices in Changzhou. Fish ponds exhibited a significantly higher total antibiotic concentration of 3.27 to 445.57 ng/L compared to crab ponds (13.01 to 206.30 ng/L) and shrimp ponds (23.17 to 107.40 ng/L). Quinolones and sulfonamides were the predominant antibiotic classes found in fish ponds, accounting for 51.49 % of the total antibiotic concentration. Notably, sulfamethoxazole (SMX) and enrofloxacin (ENR) exhibited the highest antibiotic concentrations. Risk assessments demonstrated that SMX, ENR, and ofloxacin (OFX) contributed significantly to ecological risks. Furthermore, the study found that the tertiary constructed wetland treatment process achieved a remarkable removal rate of 92.44 % for antibiotics in aquaculture wastewater, while other treatment processes displayed limited effectiveness in removing antibiotics. This study addresses the knowledge gap concerning antibiotic pollution during the cleaning process of aquaculture ponds within the Taihu Lake basin.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Junzhao Liu
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Baoju Li
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University, Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, PR China.
| |
Collapse
|
9
|
Zhong L, Sun HJ, Pang JW, Ding J, Zhao L, Xu W, Yuan F, Zhang LY, Ren NQ, Yang SS. Ciprofloxacin affects nutrient removal in manganese ore-based constructed wetlands: Adaptive responses of macrophytes and microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134579. [PMID: 38761761 DOI: 10.1016/j.jhazmat.2024.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Stefanatou A, Vouzi L, Petousi I, Koukoura A, Gatidou G, Stasinakis AS, Fountoulakis MS. Treatment of real laundry wastewater using vertical flow constructed wetland planted with the ornamental climbing plant Trachelospermum jasminoides: assessing the removal of conventional pollutants and benzotriazoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43281-43291. [PMID: 38902442 DOI: 10.1007/s11356-024-34035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
This study investigates the effectiveness of vertical flow constructed wetlands (VFCWs) planted with a climbing ornamental plant for on-site treatment of real laundry wastewater. Specifically, the presence or absence of Trachelospermum jasminoides was evaluated for the removal performance of conventional pollutants (turbidity, TSS, COD, TP) and benzotriazoles (BTRs): 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5-TTR), 5-chlorobenzotriazole (CBTR), and xylytriazole (XTR). Results revealed that high removal efficiencies ranging from 92 to 98% were presented in both planted and unplanted systems for turbidity, TSS, and COD. Moreover, high removal rates were observed for CBTR and XTR, which were the only compounds found in real laundry wastewater, in both VFCW systems (planted: 100%; 94%; unplanted: 87%; 92%, respectively). The contribution of plants to the pollutant's removal was not statistically significant for all examined parameters. However, T. jasminoides demonstrated the ability to survive and grow without any visible symptoms under the harsh conditions of laundry wastewater, enabling the development of green facade. According to the findings, the application of VFCWs for on-site laundry wastewater treatment in buildings seems to be a highly promising solution, not only for primarily removing conventional pollutants but also for addressing emerging contaminants, specifically BTRs.
Collapse
Affiliation(s)
- Aimilia Stefanatou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
| | - Lydia Vouzi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Ioanna Petousi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Asimina Koukoura
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Georgia Gatidou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | | | | |
Collapse
|
11
|
Sochacki A, Lebrun M, Minofar B, Pohořelý M, Vithanage M, Sarmah AK, Böserle Hudcová B, Buchtelík S, Trakal L. Adsorption of common greywater pollutants and nutrients by various biochars as potential amendments for nature-based systems: Laboratory tests and molecular dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123203. [PMID: 38135139 DOI: 10.1016/j.envpol.2023.123203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
Spruce wood and Typha (wetland plant) derived biochars pyrolyzed at 350 °C and 600 °C were tested for their sorption affinity for organic pollutants (diclofenac, methylparaben, benzotriazole and sodium 1-decanesulfonate) and nutrients (nitrate, ammonium, phosphate and boron) commonly found in greywater. Batch and column studies combined with molecular dynamics modelling determined the sorption capacity, kinetics, and described the underlying mechanisms. The spruce biochar (600 °C) exhibited the highest sorption capacity mainly for the tested organics. The dynamic test performed for spruce biochar (600 °C) showed that the magnitude of desorption was low, and the desorbed amount ranged between 3 and 11 %. Molecular dynamics modelling (a computational tool for elucidating molecular-level interactions) indicated that the increased sorption of nitrate and boron on spruce biochar (600 °C) could be attributed to hydrophobic interactions. The molecular dynamics shows that predominant adsorption of organic pollutants was governed by π-π stacking, with a minor role of hydrogen-bonding on the biochar surface. In summary, higher pyrolysis temperature biochar yielded greater adsorption capacity greywater borne contaminants and the reaction temperature (10-34 °C) and presence of anionic surfactant had a limited effect on the adsorption of organic pollutants, suggesting efficacious application of biochar in general for greywater treatment in nature-based systems.
Collapse
Affiliation(s)
- Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic.
| | - Manhattan Lebrun
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Babak Minofar
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005, České Budějovice, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, V. V. I., Rozvojová 135, 165 02, Praha 6-Suchdol, Czech Republic; Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Ajit K Sarmah
- Civil and Environmental Engineering Department, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Barbora Böserle Hudcová
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Stanislav Buchtelík
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Lukáš Trakal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic.
| |
Collapse
|
12
|
Pang Q, Xie L, Shen C, Zhu X, Wang L, Ni L, Peng F, Yu J, Wang L, He F. Triclosan disturbs nitrogen removal in constructed wetlands: Responses of microbial structure and functions. ENVIRONMENTAL RESEARCH 2024; 243:117847. [PMID: 38065393 DOI: 10.1016/j.envres.2023.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
This study investigated the influence of wetland types (vertical and tidal flow constructed wetlands [CWs] [VFCW and TFCW, respectively]) and concentrations of triclosan (TCS) on the removal of pollutants (TCS and nitrogen) and microbial characteristics. The efficiency of TCS removal was significantly higher with 5 μg/L TCS (Phase B) than with 30 μg/L (Phase C) in the two CWs. The efficiencies of removal of NH4+-N and NO3--N were significantly inhibited in Phase C. Compared with the VFCW, the TFCW removed more NH4+-N at the same concentration of TCS, whereas less NO3--N was removed, and it even accumulated. Saccharimondales, an important functional genus with the highest abundance and more node connections with other genera, had a sharp decrease in relative abundance as the increasing concentrations of TCS of the two CWs conformed with its relative abundance and significantly negatively correlated with the concentration of TCS. Differentiated Roseobacter_Clade_CHAB-I-5_Lineage and Sphaerotilus were enriched in the VFCW and TFCW, respectively. The abundance of enzymes that catalyzed nitritation was significantly inhibited by TCS, whereas nitrate reductase (EC 1.7.99.4) catalyzed both denitrification and dissimilatory nitrate reduction to ammonium (DNRA), and nitrite reductase (NADH) (EC 1.7.1.15) that catalyzed DNRA comprised a larger proportion in the two CWs. Simultaneously, the abundances of two enzymes were higher in the TFCW than in the VFCW. The network analysis indicated that the main genera were promoted more by TCS in the VFCW, while inhibited in the TFCW. Moreover, the concentrations of nitrogen (NH4+-N, NO3--N, and TN) significantly positively correlated with TCS-resistant bacteria, and negatively correlated with most nitrogen-transforming bacteria with species that varied between the VFCW and TFCW. The results of this study provide a reference for the molecular biological mechanism of the simultaneous removal of nitrogen and TCS in the CWs.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caofeng Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lixiao Ni
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ling Wang
- Xinjiang Tianxi Environmental Protection Technology Co., LTD., Urumqi, 830000, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
13
|
Wu K, Leliveld T, Zweers H, Rijnaarts H, Langenhoff A, Fernandes TV. Impact of mixed microalgal and bacterial species on organic micropollutants removal in photobioreactors under natural light. BIORESOURCE TECHNOLOGY 2024; 393:130083. [PMID: 38000642 DOI: 10.1016/j.biortech.2023.130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Single microalgae species are effective at the removal of various organic micropollutants (OMPs), however increased species diversity might enhance this removal. Sixteen OMPs were added to 2 continuous photobioreactors, one inoculated with Chlorella sorokiniana and the other with a microalgal-bacterial community, for 112 d under natural light. Three media were sequentially used in 3 Periods: I) synthetic sewage (d 0-28), II) 10x diluted anaerobically digested black water (AnBW) (d 28-94) and III) 5x diluted AnBW (d 94-112). Twelve OMPs were removed > 30 %, while 4 were < 10 % removed. Removal efficiencies were similar for 9 OMPs, yet the mixed community showed a 2-3 times higher removal capacity (µg OMP/g dry weight) than C. sorokiniana during Period II pseudo steady state. The removal decreased drastically in Period III due to overgrowth of filamentous green algae. This study shows for the first time how microbial community composition and abundance are key for OMPs removal.
Collapse
Affiliation(s)
- Kaiyi Wu
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Tino Leliveld
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
14
|
Wagner TV, Rempe F, Hoek M, Schuman E, Langenhoff A. Key constructed wetland design features for maximized micropollutant removal from treated municipal wastewater: A literature study based on 16 indicator micropollutants. WATER RESEARCH 2023; 244:120534. [PMID: 37659177 DOI: 10.1016/j.watres.2023.120534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.
Collapse
Affiliation(s)
- Thomas V Wagner
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands.
| | - Fleur Rempe
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Mirit Hoek
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Els Schuman
- LeAF B.V., Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands
| |
Collapse
|
15
|
Ho MC, Yang RY, Chen GF, Chen WH. The effect of metformin and drinking water quality variation on haloacetamide formation during chlor(am)ination of acetaminophen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117603. [PMID: 36893720 DOI: 10.1016/j.jenvman.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Acetaminophen (Apap) is widely used and is known to form toxic haloacetamides (HAcAms) during chlorination. Metformin (Met) is a typical medication with usage much higher than that of Apap and its ubiquitous presence in the environment is known. The objective of this study was to investigate the effects of Met which contains multiple amino groups potentially joining reactions and different chlorination methods on HAcAm formation from Apap. In addition, a major drinking water treatment plant (DWTP) using the largest river in southern Taiwan was sampled to study the influence of Apap in a DWTP on the HAcAm formation. Results showed increasing dichloroacetamide (DCAcAm) molar yields of Apap at a Cl/Apap molar ratio of 5 during chlorination (0.15%) and two-step chlorination (0.03%). HAcAms were formed by the chlorine substitution of hydrogen on the methyl group in Apap followed by the cleavage of the bonding between nitrogen and aromatic. While a high Cl/Apap ratio during chlorination led to reactions between chlorine and HAcAms formed decreasing the HAcAm yields, the two-step chlorination further reduced the HAcAm formation during chlorination by a factor of 1.8-8.2. However, Met which limitedly formed HAcAms increased the DCAcAm yields of Apap by 228% at high chlorine dosages during chlorination and by 244% during two-step chlorination. In the DWTP, trichloroacetamide (TCAcAm) formation was important. The formation was positively correlated with NH4+, dissolved organic carbon (DOC), and specific ultraviolet absorbance (SUVA). DCAcAm dominated in the presence of Apap. The DCAcAm molar yields were 0.17%-0.27% and 0.08%-0.21% in the wet and dry seasons, respectively. The HAcAm yields of Apap in the DWTP were limitedly changed between different locations and seasons. Apap could be one important cause for HAcAm formation in a DWTP, as the presence of other pharmaceuticals such as Met possibly worsens the situation in chlorine applications.
Collapse
Affiliation(s)
- Ming-Chuan Ho
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Ying Yang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Guan-Fu Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|