1
|
Cheng Y, Zheng X, Jiang Y, Xiao Q, Luo Q, Ding Y. Key genes and microbial ecological clusters involved in organophosphate ester degradation in agricultural fields of a typical watershed in southwest China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138076. [PMID: 40209409 DOI: 10.1016/j.jhazmat.2025.138076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, and they have raised global concern due to their persistence, bioaccumulation, and potential toxicity. However, OPE contamination characteristics and microbial degradation mechanisms in agricultural soils remain poorly understood. This study investigated agricultural soils from the riparian zone of the Anning River Basin in southwest China. The concentrations of 12 OPEs were determined using gas chromatography-tandem mass spectrometry. The results revealed that the total OPE concentration was moderate, with triethyl phosphate being the most abundant compound. Metagenomic techniques and Bayesian linear regression analysis were employed in combination with the Kyoto Encyclopedia of Genes and Genomes database to identify potential degradation pathways for triethyl phosphate and tris (2-chloroethyl) phosphate. The phoA, phoB, phoD, and glpQ genes, which encode phosphatases, catalyze ester bond cleavage, thereby facilitating the degradation of OPEs. Further microbial interaction network analysis identified core OPE-degrading microorganisms, including Pimelobacter simplex, Nocardioides sp. JS614, Nocardioides daphniae, and Methylocystis heyeri. Additionally, neutral community models indicated that environmental selection drives microbial community structure. In conclusion, this study provides an in-depth understanding of OPE contamination and its microbial degradation mechanisms in agricultural soils, offering theoretical insights for pollution management and remediation strategies.
Collapse
Affiliation(s)
- Yu Cheng
- College of Geography, China West Normal University, Nanchong 637009, PR China; Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, PR China
| | - Xuehao Zheng
- College of Geography, China West Normal University, Nanchong 637009, PR China; Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| | - Yukun Jiang
- Key Laboratory of Ecological Restoration of Regional Contaminated Environment, Ministry of Education, College of Environment, Shenyang University, Shenyang 110044, China
| | - Qiang Xiao
- Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, PR China
| | - Qing Luo
- Key Laboratory of Ecological Restoration of Regional Contaminated Environment, Ministry of Education, College of Environment, Shenyang University, Shenyang 110044, China.
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| |
Collapse
|
2
|
Guo M, Cheng Z, Zhang S, Wang P, Feng H, Zhang T, Zhu H, Sun H, Wang L. Gestation Exposure to Organophosphate Esters: Structure-Dependent Transplacental Transfer Patterns, Mechanisms, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40420574 DOI: 10.1021/acs.est.5c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Organophosphate esters (OPEs), characterized by diverse chemical substituents, exhibit varying environmental exposure and toxicity profiles. Therefore, OPEs may have potential for placental transfer and could impact neonatal development. However, the structural-specific transplacental mechanisms and toxicity effects of the OPEs remain poorly understood. Herein, we develop an integrated evaluation system with human biomonitoring, uterine perfusion in pregnant rats, and placental cells. OPEs were frequently observed in maternal and cord whole blood, urine, and amniotic fluid samples (n = 41 sample sets) with median concentrations of 9.47, 9.31, 9.90, and 5.98 ng/mL, respectively. Rat uterine perfusion experiment suggested that chlor-OPEs exhibited relatively higher transplacental efficiency compared to alkyl- and aryl-OPEs. Passive diffusion dominated by lipophilicity (log Kow) and transporters dominated active transport may be involved in the transplacental transportation mechanisms. The results from exposure experiments to placenta BeWo cells indicated that organophosphate triesters (tri-OPEs) (IC50 values of 145 to 1464 μM) exhibited higher toxicity to the corresponding organophosphate diesters (di-OPEs) (IC50 values of 752 to 1794 μM). In addition, chlor-OPEs represented significantly greater cytotoxic potential to placenta cells in comparison to alkyl and aryl-OPEs. More attention should be paid for chlor-OPEs as its higher transplacental and toxicity potential compared to alkyl- and aryl-OPEs.
Collapse
Affiliation(s)
- Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huan Feng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Yu Y, Huang W, Tang S, Xiang Y, Yuan L, Yin H, Dang Z. Degradation mechanisms of isodecyl diphenyl phosphate (IDDP) and bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) using a novel microbially-enriched culture. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138453. [PMID: 40327934 DOI: 10.1016/j.jhazmat.2025.138453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Organophosphate esters (OPEs) pose significant environmental concerns due to their widespread presence, potential toxicity, and persistence. This study investigated the degradation of the isodecyl diphenyl phosphate (IDDP) and bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) using a novel enrichment culture, which could degrade 85.4 % and 78.2 % of 1 mg/L IDDP and BEHPP after 192 h and 172 h, respectively, under extremely low bacterial dosage (the initial OD600 nm= 0.0075, biomass was approximately 1 mg/L). The identification of intermediate products suggested that the degradation reactions likely included hydrolysis, hydroxylation, methylation, carboxylation, and glycosylation. Metagenomic analysis highlighted the crucial role of enzymes in degrading IDDP and BEHPP, including phosphatase, phosphodiesterase, cytochrome P450, and hydroxylase. Pure strains Burkholderia cepacia ZY1, Sphingopyxis terrae ZY2, and Amycolatopsis ZY3 were isolated, and their efficient individual degradation abilities were confirmed. These efficiencies were lower compared to the enrichment culture, emphasizing the importance of microbial interactions for effective degradation. The pathways identified for these strains illustrated their involvement in different degradation steps, reinforcing the synergy between different degraders. Molecular dynamics simulations provided insights into the interactions between alkaline phosphatase (ALP), cytochrome P450 (CYP450), and hydroxylase with OPEs. These enzymes demonstrated a strong binding capacity with both BEHPP and IDDP, exhibiting distinct binding site preferences that may contribute to varied metabolic pathways. These findings comprehensively reveal the transformation mechanisms of OPEs.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ying Xiang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lizhu Yuan
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:798-810. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Losantos D, Fernández-Arribas J, Pérez-Trujillo M, Eljarrat E, Sarrà M, Caminal G. Degradation of organophosphate flame retardants by white-rot fungi: Degradation pathways and associated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178260. [PMID: 39752987 DOI: 10.1016/j.scitotenv.2024.178260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation. In this study, three different WRF were paired with individual OPFRs, and potential transformation products (TPs) were identified by UHPLC-HRMS. Some compounds structures were further validated by NMR. From these data degradation pathways were proposed. TBP was degraded by successive hydroxylation and hydrolysis reactions, with a novel dehydrogenation step suggested. Both TCEP and TCPP underwent oxidative dechlorination, with TCEP experiencing subsequent hydrolysis. Uncommon reductive dehalogenation was also observed. TCPP further underwent hydroxylation and environmentally relevant methylation. TBEP generated numerous TPs, mainly by successive dealkylations, along with hydroxylation. Notably, demethylation in TBEP degradation was proposed for the first time. Additional secondary products were formed through hydroxylation and oxidation of the initial metabolites. Finally, in vivo and in silico toxicity assessments were conducted, identifying certain TPs as potentially toxic.
Collapse
Affiliation(s)
- Diana Losantos
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, Campus Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Julio Fernández-Arribas
- Environmental and Water Chemistry for Human Health (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Míriam Pérez-Trujillo
- Nuclear Magnetic Resonance Service, Universitat Autònoma de Barcelona, Campus Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ethel Eljarrat
- Environmental and Water Chemistry for Human Health (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Montserrat Sarrà
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, Campus Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Yu Y, Ai T, Huang J, Jin L, Yu X, Zhu X, Sun J, Zhu L. Metabolism of isodecyl diphenyl phosphate in rice and microbiome system: Differential metabolic pathways and underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124803. [PMID: 39181304 DOI: 10.1016/j.envpol.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Isodecyl diphenyl phosphate (IDDP) is among the emerging aromatic organophosphate esters (aryl-OPEs) that pose risks to both human beings and other organisms. This study aims to investigate the translocation and biotransformation behavior of IDDP in rice and the rhizosphere microbiome through hydroponic exposure (the duration of hydroponic exposure was 10 days). The rhizosphere microbiome 9-FY was found to efficiently eliminate IDDP, thereby reducing its uptake in rice tissues and mitigating the negative impact of IDDP on rice growth. Furthermore, this study proposed the first-ever transformation pathways of IDDP, identifying hydrolysis, hydroxylation, methylation, methoxylation, carboxylation, and glucuronidation products. Notably, the methylation and glycosylation pathways were exclusively observed in rice, indicating that the transformation of IDDP in rice may be more complex than in microbiome 9-FY. Additionally, the presence of the product COOH-IDDP in rice suggested that there might be an exchange of degradation products between rice and rhizobacteria, implying their potential interaction. This finding highlights the significance of rhizobacteria's role which cannot be overlooked in the accumulation and transformation of organic pollutants in grain crops. The study revealed active members in 9-FY during IDDP degradation, and metagenomic analysis indicated that most of the active populations contained IDDP-degrading genes. Moreover, transcriptome sequencing showed that cytochrome P450, acid phosphatase, glucosyltransferase, and methyltransferases genes in rice were up-regulated, which was further confirmed by RT-qPCR. This provides insight into the intermediate products identified in rice, such as hydrolysis, hydroxylated, glycosylated, and methylated products. These results significantly contribute to our understanding of the translocation and transformation of organophosphate esters (OPEs) in plants and the rhizosphere microbiome, and reveal the fate of OPEs in rice and microbiome system to ensure the paddy yield and rice safety.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
7
|
Fan Q, Huang S, Guo J, Xie Y, Chen M, Chen Y, Qi W, Liu H, Jia Z, Hu H, Qu J. Spatiotemporal distribution and transport flux of organophosphate esters in the sediment of the Yangtze River. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135312. [PMID: 39068884 DOI: 10.1016/j.jhazmat.2024.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The Yangtze River Basin is an important area for organophosphate esters (OPEs) consumption and emission. Studies proved high OPE detection in Yangtze River water, but there is limited information about the spatiotemporal distribution and transport flux of OPEs in sediment. The present study investigated 16 OPEs in sediment from upstream to mid-downstream of the Yangtze River. The mean concentration of OPEs was 84.30 ng/g, and alkyl-OPEs was the primary component. Great specific surface area and high content of organic carbon significantly increased OPE concentration in Three Gorges Reservoir (TGR) by physical adsorption and chemical bonds (p < 0.05), making TGR the most contaminated area in mainstream. No significant differences in OPE constituents were found in seasonal distribution. Four potential sources of OPEs were identified by principal component analysis and self-organizing maps, and traffic emissions were the dominant source for OPEs. The hazard quotient model results indicated that aryl-OPEs showed moderate risks in the mainstream of Yangtze River, alkyl-OPEs and Cl-OPEs showed low risks. TGR was a significant sink of OPEs in Yangtze River and buried 7.41 tons of OPEs in 2020, a total of 14.87 tons of OPE were transported into the sea by sediment.
Collapse
Affiliation(s)
- Qinya Fan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yu Xie
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Yufeng Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuoyue Jia
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Hongxiu Hu
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Losantos D, Sarra M, Caminal G. OPFR removal by white rot fungi: screening of removers and approach to the removal mechanism. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1387541. [PMID: 38827887 PMCID: PMC11140845 DOI: 10.3389/ffunb.2024.1387541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
The persistent presence of organophosphate flame retardants (OPFRs) in wastewater (WW) effluents raises significant environmental and health concerns, highlighting the limitations of conventional treatments for their remotion. Fungi, especially white rot fungi (WRF), offer a promising alternative for OPFR removal. This study sought to identify fungal candidates (from a selection of four WRF and two Ascomycota fungi) capable of effectively removing five frequently detected OPFRs in WW: tributyl phosphate (TnBP), tributoxy ethyl phosphate (TBEP), trichloroethyl phosphate (TCEP), trichloro propyl phosphate (TCPP) and triethyl phosphate (TEP). The objective was to develop a co-culture approach for WW treatment, while also addressing the utilization of less assimilable carbon sources present in WW. Research was conducted on carbon source uptake and OPFR removal by all fungal candidates, while the top degraders were analyzed for biomass sorption contribution. Additionally, the enzymatic systems involved in OPFR degradation were identified, along with toxicity of samples after fungal contact. Acetate (1.4 g·L-1), simulating less assimilable organic matter in the carbon source uptake study, was eliminated by all tested fungi in 4 days. However, during the initial screening where the removal of four OPFRs (excluding TCPP) was tested, WRF outperformed Ascomycota fungi. Ganoderma lucidum and Trametes versicolor removed over 90% of TnBP and TBEP within 4 days, with Pleorotus ostreatus and Pycnoporus sanguineus also displaying effective removal. TCEP removal was challenging, with only G. lucidum achieving partial removal (47%). A subsequent screening with selected WRF and the addition of TCPP revealed TCPP's greater susceptibility to degradation compared to TCEP, with T. versicolor exhibiting the highest removal efficiency (77%). This observation, plus the poor degradation of TEP by all fungal candidates suggests that polarity of an OPFR inversely correlates with its susceptibility to fungal degradation. Sorption studies confirmed the ability of top-performing fungi of each selected OPFR to predominantly degrade them. Enzymatic system tests identified the CYP450 intracellular system responsible for OPFR degradation, so reactions of hydroxylation, dealkylation and dehalogenation are possibly involved in the degradation pathway. Finally, toxicity tests revealed transformation products obtained by fungal degradation to be more toxic than the parent compounds, emphasizing the need to identify them and their toxicity contributions. Overall, this study provides valuable insights into OPFR degradation by WRF, with implications for future WW treatment using mixed consortia, emphasizing the importance of reducing generated toxicity.
Collapse
Affiliation(s)
- Diana Losantos
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Montserrat Sarra
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Glòria Caminal
- Institut de Quiímica Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Hu Q, Zeng X, Xiao S, Song Q, Liang Y, Yu Z. Co-occurrence of organophosphate diesters and organophosphate triesters in daily household products: Potential emission and possible human health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133116. [PMID: 38056277 DOI: 10.1016/j.jhazmat.2023.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Eight paired organophosphate diesters (Di-OPs) and organophosphate triesters (Tri-OPs) were investigated in wipes from analytical instruments and 47 material samples related to household products, including textiles, electrical/electronic devices, building/ decoration materials and children's products. The total concentrations of Di-OPs ranged in 3577-95551 ng/m2 in the wipes and limit of detection-23002 ng/g in the materials. The Tri-OPs concentrations varied significantly in the ranges of 107218-1756892 ng/m2 and 2.13-503149 ng/g, respectively. Four industrial Di-OPs were detected in > 65% of the studied samples suggesting their direct application in the studied materials. Furthermore, we demonstrated for the first time that four non-industrial Di-OPs, e.g., bis(2-chloroethyl) phosphate, bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate, and bis(butoxyethyl) phosphate, identified as degradation products of their respective Tri-OPs were also detected in these studied samples, which might act as important emission sources of Di-OPs in indoor environments. We estimated the burden of Di-OPs and Tri-OPs in a typical residential house and instrumental room, which both exhibited important contributions from furniture, building and decoration materials, and electrical/electronic devices. Limit health risk was posed to local people via air inhalation.
Collapse
Affiliation(s)
- Qiongpu Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiyu Xiao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Song
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Luo Z, Huang W, Yu W, Tang S, Wei K, Yu Y, Xu L, Yin H, Niu J. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products. CHEMOSPHERE 2023; 343:140267. [PMID: 37758090 DOI: 10.1016/j.chemosphere.2023.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.
Collapse
Affiliation(s)
- Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kun Wei
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|