1
|
Bui Thi TM, Chen T, Luo T, Leroux Y, Hanna K, Boily JF. Ligand-limited oxidation of ciprofloxacin by Mn(III). JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138373. [PMID: 40306247 DOI: 10.1016/j.jhazmat.2025.138373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Mn(III) species play critical roles in determining the environmental fate of antibiotics released into natural systems. However, their reactivity is strongly influenced by complexation reactions with (in)organic ligands. This study investigates the impact of Mn(III) complexation with pyrophosphate (PP), a model environmental ligand, on the redox-driven degradation of ciprofloxacin (CIP), a widely used antibiotic and environmental contaminant. Spectroscopic analysis and thermodynamic modeling revealed that Mn(III)-PP complexes initially dissociate into MnOH2+ species, which can then disproportionate and form MnO2 colloids. Both dissociation and disproportionation reactions had comparable trends at pH 4 and 7, with reactivities that were strongly dependent on Mn(III):PP ratios. The progress of CIP oxidation following direct coordination with Mn compounds over time was sigmoidal, with an initial lag phase attributed to Mn(III)-PP complex dissociation and disproportionation. CIP degradation was predominantly governed by pH, with maximal rate constants decreasing from k = 0.390 h-1 at pH 3 to k = 0.065 h-1 at pH 5, and no CIP removal under circumneutral to alkaline conditions. Cyclic voltammetry also confirmed that the strongly pH-dependent redox potential of the Mn(III)/Mn(II) couple aligned with facile CIP oxidation under acidic conditions. These collective findings indicated that ligand complexation, such as with PP, enhanced Mn(III) stability and mitigated dissociation and disproportionation reactions. The new insight provided by this work on the speciation and redox activity of Mn(III) should thereby be considered for understanding ciprofloxacin degradation in contaminated water systems.
Collapse
Affiliation(s)
- Tra My Bui Thi
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Tao Chen
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Tao Luo
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Yann Leroux
- Univ. Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Khalil Hanna
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | | |
Collapse
|
2
|
Laloo AE, Gupta A, Verrone V, Dubey RK. Role of Fe and Mn in organo-mineral-microbe interactions: evidence of carbon stabilization and transformation of organic matter leading to carbon greenhouse gas emissions. Lett Appl Microbiol 2025; 78:ovaf044. [PMID: 40118507 DOI: 10.1093/lambio/ovaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
Up to 90% of organic matter (OM) in soils and sediments are stabilized and protected against microbial decomposition through organo-mineral interactions, formation of soil aggregates, pH, and oxygen availability. In soils and sediment systems, OM is associated with mineral constituents promoting carbon persistence and sequestration of which iron (Fe) and manganese (Mn) are crucial components. Under anoxic condition, microbes couple the decomposition of OM to the oxidative/reductive transformation of Fe/Mn minerals leading to carbon greenhouse gas (C-GHG) emissions (i.e. CH4 and CO2). Although these organo-mineral-microbe interactions have been observed for decades, the bio-geochemical mechanisms governing the switch from OM stability toward OM degradation are not fully understood. Interest in this field have been growing steadily given the interest in global warming caused by OM decomposition leading to C-GHG emissions. This review emphasizes the dual role of Fe/Mn minerals in both OM stability and decomposition. Additionally, we synthesize the conceptual understanding of how Fe/Mn minerals govern OM dynamics and the resultant C-GHG emissions via microbial-mediated carbon transformation. We highlight the need for interdisciplinary research to better understand organo-Fe/Mn mineral-microbial interactions to develop management handles for climate mitigation strategies.
Collapse
Affiliation(s)
- Andrew Elohim Laloo
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Abhishek Gupta
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Valeria Verrone
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Rama Kant Dubey
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
- Department of Biological Science, National University of Singapore, 117558, Singapore
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406, India
| |
Collapse
|
3
|
Lu X, Wang X, He H, Liu Q, Li J, Zhao Z, Yang P, Pan Z, Wang Z. Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137013. [PMID: 39736254 DOI: 10.1016/j.jhazmat.2024.137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO2 ≫ γ-MnOOH > Mn3O4. Adding pyrophosphate (PP) significantly enhanced BPA degradation by promoting the formation of Mn(III)-PP complexes and exposing more reactive sites, achieved through destabilizing the crystal structure and mitigating of Mn(II) readsorption, particularly in γ-MnOOH and Mn3O4. Our kinetic model revealed that heterogeneous degradation by Mn oxides is the predominant reaction pathway, accounting for 61.4 %, 87.8 %, and 73.8 % of the total degraded BPA for δ-MnO2, γ-MnOOH, and Mn3O4, respectively, even in the presence of significant amount of dissolved Mn(III) intermediates due to high PP concentrations. These results offer mechanistic details on BPA degradation by Mn oxides and the influence of ligand concentration, providing helpful insights for optimizing degradation strategies of organic pollutants.
Collapse
Affiliation(s)
- Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ziyi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Ren M, Su J, Bai Y, Wang Y, Hou C, Zhang Y. Simultaneous removal of nitrate, manganese, zinc, and bisphenol a by a biofilm reactor with β-CD modified corn stover biochar and PU sponges: Performance and microbial community response. ENVIRONMENTAL RESEARCH 2024; 263:120156. [PMID: 39414110 DOI: 10.1016/j.envres.2024.120156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In the present study, a biofilm reactor with manganese (Mn) redox cycling was established to remove nitrate (NO3--N), bisphenol A (BPA), zinc (Zn(II)), and Mn(II) using β-cyclodextrin (β-CD) modified corn stover biochar (BC) and polyurethane sponges loaded with Cupriavidus sp. HY129 and Pantoea sp. MFG10. At C/N = 2.0, HRT = 6 h, Mn(II) = 10.0 mg L-1, and BPA and Zn(II) concentrations = 1.0 mg L-1, the removal efficiencies of NO3--N, Zn(II), BPA, and Mn(II) were 81.5%, 86.5%, 87.9%, and 75.5%, respectively. The outcomes demonstrated the success that the addition of β-CD could accelerate electron transfer activity and the denitrification process. The remediation of BPA and Zn(II) was mainly through the adsorption of bioprecipitation generated by reactor operation. The bioreactor could preserve the stability of the biological community and the expression of pertinent functional genes under the coercion of BPA and Zn(II).
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Wang X, Li X, Su J, Li X, Zhang Q. Multiple effects of microbially induced calcium precipitation on bacteria under different molar volumes of organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122591. [PMID: 39299110 DOI: 10.1016/j.jenvman.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Microbially induced calcium precipitation (MICP) has been extensively discussed as a water treatment method. However, the impact of MICP on the selective adsorption of different organic contaminants in industrial wastewater and the metabolism and growth of bacteria has not been elucidated in detail. In this study, by comparing the differences in the metabolism and removal of bacteria by phenol, bisphenol A (BPA), and tetracycline (TC), it was found that bioprecipitates had significant differences in the adsorption capacity of organic pollutants with different molar volumes. Concurrently, bacteria produced more extracellular polymeric substances (EPS) under the influence of organic pollutants, and the self-protection mechanism of bacteria would reduce the amount of gaseous nitrogen. However, the points on the surface of EPS promoted the process of MICP, and MICP encapsulated bacteria to form precipitates to regulate bacteria in water and further improve the removal of carbon and nitrogen in water through biomineralization. This experiment provides new insights into the selective adsorption of bioprecipitates and its multiple effects on bacteria.
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xue Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qingli Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
6
|
Han H, Chen M, Sun C, Han Y, Xu L, Zhao Y. Synergistic enhancement in hydrodynamic cavitation combined with peroxymonosulfate fenton-like process for bpa degradation: New insights into the role of cavitation bubbles in regulation reaction pathway. WATER RESEARCH 2024; 268:122666. [PMID: 39486149 DOI: 10.1016/j.watres.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The combination of hydrodynamic cavitation (HC) and Fenton-like oxidation technology can dramatically enhance the pollutant removal capacity, however, the synergistic effect of cavitation and catalysts on reactive oxygen species (ROS) generation remained enigmatic. In this study, we established a combined system based on HC and Ce-MnFe2O4 activated peroxymonosulfate (PMS) for BPA removal, and attentions were paid on the role of cavitation bubbles. The results show that the combination of HC in Ce-MnFe2O4 activated PMS could mediate the degradation of BPA from the non-radical pathway dominated by 1O2 to •O2- dominated radical pathway. Both controlled experiments and theoretical calculations revealed that the cavitation bubbles with different sizes play the dominant role in ROS generation. The microjets produced by the collapse of cavitation bubbles could create a large number of oxygen vacancy defects on Ce-MnFe2O4 surface, which modify the activation barrier of PMS and facilitate the generation of •O2- thermodynamically. The stable existing cavitation bubbles with the size of 100∼400 nm could create considerable gas-liquid interface. The molecular dynamics simulations show that the nano bubbles can concentrate the BPA and increase the probability of contacts between BPA and Ce-MnFe2O4, hence effectively solve the issues of short lifetime of •O2- radicals and limited mass transfer distance to strengthen the reaction. In addition, the PMS/Ce-MnFe2O4/HC system not only achieves the satisfied COD (95 %) and TOC (65 %) removal efficiency but also enabled the BPA-contaminated water with a low energy cost of 0.065 kWh·m-3 and oxidant cost, highlighting the application potential of the HC technology for contaminated water.
Collapse
Affiliation(s)
- Hongkun Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Mengfan Chen
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Congting Sun
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China.
| | - Yuying Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province, Changchun 130022, PR China
| | - Yingming Zhao
- Department of Biological Sciences, University of Windsor, Ontario, Windsor, Canada
| |
Collapse
|
7
|
Wang X, Jones MR, Pan Z, Lu X, Deng Y, Zhu M, Wang Z. Trivalent manganese in dissolved forms: Occurrence, speciation, reactivity and environmental geochemical impact. WATER RESEARCH 2024; 263:122198. [PMID: 39098158 DOI: 10.1016/j.watres.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.
Collapse
Affiliation(s)
- Xingxing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Matthew R Jones
- Wolfson Atmospheric Chemistry Laboratory, University of York, York YO10 5DD, United Kingdom
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of, Geosciences, Wuhan 430078, China
| | - Mengqiang Zhu
- Department of Geology, University of Maryland, College Park, MD, 20740, USA
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Niu L, Luo Z, Chen W, Zhong X, Zeng H, Yu X, Feng M. Deciphering the Novel Picolinate-Mn(II)/peroxymonosulfate System for Sustainable Fenton-like Oxidation: Dominance of the Picolinate-Mn(IV)-peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39276076 DOI: 10.1021/acs.est.4c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A highly efficient and sustainable water treatment system was developed herein by combining Mn(II), peroxymonosulfate (PMS), and biodegradable picolinic acid (PICA). The micropollutant elimination process underwent two phases: an initial slow degradation phase (0-10 min) followed by a rapid phase (10-20 min). Multiple evidence demonstrated that a PICA-Mn(IV) complex (PICA-Mn(IV)*) was generated, acting as a conductive bridge facilitating the electron transfer between PMS and micropollutants. Quantum chemical calculations revealed that PMS readily oxidized the PICA-Mn(II)* to PICA-Mn(IV)*. This intermediate then complexed with PMS to produce PICA-Mn(IV)-PMS*, elongating the O-O bond of PMS and increasing its oxidation capacity. The primary transformation mechanisms of typical micropollutants mediated by PICA-Mn(IV)-PMS* include oxidation, ring-opening, bond cleavage, and epoxidation reactions. The toxicity assessment results showed that most products were less toxic than the parent compounds. Moreover, the Mn(II)/PICA/PMS system showed resilience to water matrices and high efficiency in real water environments. Notably, PICA-Mn(IV)* exhibited greater stability and a longer lifespan than traditional reactive oxygen species, enabling repeated utilization. Overall, this study developed an innovative, sustainable, and selective oxidation system, i.e., Mn(II)/PICA/PMS, for rapid water decontamination, highlighting the critical role of in situ generated Mn(IV).
Collapse
Affiliation(s)
- Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Zhipeng Luo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xinyang Zhong
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Huabin Zeng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
9
|
Ren M, Bai Y, Wang Y, Su J, Hou C, Zhang Y. Simultaneous removal of nitrate, manganese, zinc, and bisphenol a by manganese redox cycling system: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 407:131106. [PMID: 39004108 DOI: 10.1016/j.biortech.2024.131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Luo H, Du H, Jiang M, Yang C, Weng T, Chen Z, Jiang F, Chen H. Crystal phase-driven performance of MnO 2 in aqueous phase low-temperature thermal catalysis: Synergistic interactions between Mn 3+ and surface lattice oxygen. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135209. [PMID: 39024760 DOI: 10.1016/j.jhazmat.2024.135209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Catalytic oxidation at mild conditions is crucial for mitigating the high pressure and high temperature challenges associated with current catalytic wet air oxidation (CWAO) technologies in wastewater treatment. Among potential materials for catalytic oxidation reactions, polycrystalline MnO2 existed in natural minerals holds considerable promise. However, the relationships between different crystal phases of MnO2 and their catalytic activity sources in aqueous phase remain uncertain and subject to debate. In this research, we synthesized various MnO2 crystal phases, comprising α-, β-, δ-, γ-, ε-, and λ-MnO2, and assessed their catalytic oxidation efficiency during low-temperature heating for treatment of organic pollutants. Our findings demonstrate that λ-MnO2 exhibits the highest catalytic activity, followed by δ-MnO2, γ-MnO2, α-MnO2, ε-MnO2, and β-MnO2. The variations in catalytic activity among different MnO2 are attributed to variances in their oxygen vacancy abundance and redox activity. Furthermore, we identified the primary active species, which include Mn3+ and superoxide radicals (•O2-) generated by surface lattice oxygen of MnO2. This research highlights the critical role of crystal phases in influencing oxygen vacancy content, redox activity, and overall catalytic performance, providing valuable insights for the rational design of MnO2 catalysts tailored for effective organic pollutant degradation in CWAO applications.
Collapse
Affiliation(s)
- Haopeng Luo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Heng Du
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingwei Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenyi Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tingyi Weng
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zihan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
Zhou J, Wang X, Sun Z, Gu C, Gao J. The mechanisms of ·OH formation in MnO 2 and oxalate system: Implication for ATZ removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134213. [PMID: 38613958 DOI: 10.1016/j.jhazmat.2024.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Manganese oxides (MnO2) are commonly prevalent in groundwater, sediment and soil. In this study, we found that oxalate (H2C2O4) dissolved MnO2, leading to the formation of Mn(II)/(III), CO2(aq) and reactive oxygen species (·CO2-/O2·-/H2O2/·OH). Notably, CO2(aq) played a crucial role in ·OH formation, contributing to the degradation of atrazine (ATZ). To elucidate underneath mechanisms, a series of reactions with different gas-liquid ratios (GLR) were conducted. At the GLR of 0.3, 3.76, and + ∞ 79.4 %, 5.32 %, and 5.28 % of ATZ were eliminated, in which the cumulative ·OH concentration was 39.6 μM, 8.11 μM, and 7.39 μM and the cumulative CO2(aq) concentration was 11.2 mM, 4.7 mM, and 2.8 mM, respectively. The proposed reaction pathway was that CO2(aq) participated in the formation of a ternary complex [C2O4-Mn(II)-HCO4·3 H2O]-, which converted to a transition state (TS) as [C2O4-Mn(II)-CO3-OH·3 H2O]-, then decomposed to a complex radical [C2O4-Mn(II)-CO3·3 H2O]·- and ·OH after electron transfer within TS. It was novel to discover the role of CO2(aq) for ·OH yielding during MnO2 dissolution by H2C2O4. This finding helps revealing the overlooked processes that CO2(aq) influenced the fate of ATZ or other organic compounds in environment and providing us ideas for new technique development in contaminant remediation. ENVIRONMENTAL IMPLICATION: Manganese oxides and oxalate are common in soil, sediment and water. Their interactions could induce the formation of Mn(II)/(III), CO2(aq) and ·CO2-/O2·-/H2O2. This study found that atrazine could be effectively removed due to ·OH radicals under condition of high CO2(aq) concentration. The concentrations of Mn (0.0002-8.34 mg·L-1) and CO2(aq) (15-40 mg·L-1) were high in groundwater, and the surface water or rainfall seeps into groundwater and bring organic acids, which might promote the ·OH formation. The results might explain the missing steps of herbicides transformation in these environments and be helpful in developing new techniques in remediation in future.
Collapse
Affiliation(s)
- Jinjin Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China
| | - Xinghao Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China.
| |
Collapse
|
12
|
Yang S, Shobnam N, Sun Y, Löffler FE, Im J. The relative contributions of Mn(III) and Mn(IV) in manganese dioxide polymorphs to bisphenol A degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132596. [PMID: 37757556 DOI: 10.1016/j.jhazmat.2023.132596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Polymorphs of MnO2 comprise Mn(III) and Mn(IV), which are both strong oxidants capable of BPA degradation, but their relative contributions are unclear. To advance process understanding, the reactivities of biogenic MnO2 prepared using Roseobacter sp. AzwK-3b and synthetic MnO2 (i.e., hexagonal and triclinic birnessite) toward BPA were compared. Both colloidal and particulate biogenic MnO2, as well as triclinic birnessite, showed insignificant reactivity towards BPA, but degradation did occur when pyrophosphate (PP), a ligand for Mn(III), was present. Despite higher Mn(III) content of triclinic birnessite (38.6 %), only hexagonal birnessite with an Mn(III) content of 30.4 % degraded BPA without PP, and no rate increases were observed following the addition of PP. Similarly, colloidal MnO2 degraded BPA with nearly double the rate measured with particulate MnO2 (i.e., 1.24 ± 0.10 versus 0.73 ± 0.08 h-1), even though the Mn(III) contents were only 10 % different. The Mn(III) release rates from each MnO2 polymorph in the presence of PP correlated more strongly with the observed BPA degradation rates than with Mn(III) content, suggesting that both Mn(III) release rate and Mn(III) content govern MnO2-mediated BPA degradation. In natural settings, Mn(III) generally occurs in complexed form suggesting that laboratory testing should include ligands to derive environmentally relevant information about MnO2-mediated degradation of BPA and other compounds of concern.
Collapse
Affiliation(s)
- Seongmin Yang
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Nusrat Shobnam
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
13
|
Li N, Chen F, Xu S, Zhu S, Bu L, Deng L, Shi Z, Zhou S. Removal of Microcystis aeruginosa by manganese activated sodium percarbonate: Performance and role of the in-situ formed MnO 2. CHEMOSPHERE 2023; 341:140054. [PMID: 37669718 DOI: 10.1016/j.chemosphere.2023.140054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Previous studies have found that pre-oxidation of manganese salts such as potassium permanganate and potassium manganate can remove algae in water, while existing problems such as excessive oxidation and appearance of chromaticity. In this study, our objective was to induce a Fenton-like reaction by activating sodium percarbonate (SPC) with divalent manganese (Mn(II)) to pre-oxidize algae-contaminated water. The optimal dosage of Mn(II)/SPC was determined by assessing the zeta potential of the algae and the residual Mn(II) in the solution. Moreover, we conducted a characterization of the cells post-reaction and assessed the levels of dissolved organic carbon (DOC). The disinfection by-products (DBPs) (sodium hypochlorite disinfection)of the algae-containing water subsequent to Mn(II)/SPC treatment were measured. Experiments show that Mn(II)/SPC pre-oxidation at optimal dosage acquired 88% removal of algae and less damage to the cell membrane. Moreover, the Mn(II) acted not only as a catalyst but also formed MnO2 which adsorbed onto the cell surface and facilitated sedimentation. Furthermore, this technology exhibits the capability to effectively manage algal organic matters present in water, thereby mitigating the formation of nitrogen-containing DBPs. These results highlight the potential of Mn(II)/SPC treatment for treating water contaminated with algae, thus ensuring the safety and quality of water resources.
Collapse
Affiliation(s)
- Nan Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Fan Chen
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shunkai Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
14
|
Wu S, Liu S, Wang Z, Chen Y, Zhao G. Comprehensive analysis of bisphenol analogues in complex water using a group-targeting aptamer engineered by base mutation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132427. [PMID: 37672991 DOI: 10.1016/j.jhazmat.2023.132427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bisphenol analogues (BPs) are typical environmental hormones with endocrine-disrupting effects and reproductive toxicity requiring analysis and monitoring in complex aquatic environments. However, the presence of various co-existing contaminants makes the accurate determination of total BPs difficult. To address this challenge, there is a strong need to obtain a group-targeting binder to specifically detect a class of BPs. In this work, for the first time we have identified the group-targeting BPs-aptamer with similar affinities for multiple structurally and qualitatively similar BPs. Base mutations were introduced into an aptamer specific to bisphenol A (BPA) and utilized molecular docking calculations to identify a group-targeting aptamer capable of binding BPs, including BPA, bisphenol B (BPB), bisphenol E (BPE) and bisphenol F (BPF) with binding constants in the range of 2.0 × 106 ∼ 2.7 × 106 / M. In addition, an electrochemical aptamer-based sensor (aptasensor) was constructed for highly sensitive and comprehensive analysis of a class of BPs. This aptasensor demonstrated remarkable anti-interference performance against co-existing contaminants at concentrations up to 100-fold and achieved an impressive detection limit of 6.7 pM. This innovative approach of engineering a group-targeting BPs-aptamer is important for the comprehensive analysis of BPs, providing insights into identification and monitoring a class of pollutants.
Collapse
Affiliation(s)
- Siqi Wu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Siyao Liu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|