1
|
Feng L, Wang J, Zhang L, Li J, Zhang Y, Xu M, Tang P, Wang H. Construction of direct Z-scheme Co 9S 8/CdS with tubular heterostructure through the simultaneous immobilization and in-situ reduction strategy for enhanced photocatalytic Cr(VI) reduction under visible light. J Colloid Interface Sci 2024; 675:535-548. [PMID: 38986327 DOI: 10.1016/j.jcis.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Tubular Co9S8/CdS heterostructures have been successfully synthesized by in-situ growing CdS onto Co9S8 nanotubes through a simultaneous immobilization and in-situ reduction strategy. It turned out that the so-obtained heterostructure with Co9S8/CdS molar ratio of 1/10 can display a broad light absorption edge and especially much enhanced capacity for photocatalytic reduction of Cr(VI) under visible light. The characterization analysis and experimental results suggested that an interfacial electrostatic field between Co9S8 and CdS elements in the heterostructure could be constructed due to their different Fermi levels, allowing for more quantities of highly reductive electrons to participate in the photocatalytic reaction. Therefore, the so-obtained Co9S8/CdS (1/10) heterostructures could achieve the photocatalytic reduction efficiency of 100% within 20 min, which was more than two and four times larger than that of pristine CdS and Co9S8, respectively. Moreover, the possible photocatalytic reaction mechanism for reducing Cr(VI) was investigated and found to follow the direct Z-scheme charge transfer pathway. This novel fabrication route for composite photocatalysts with tubular heterostructures could lead to the widespread implementations for the elimination of various harmful pollutants in the process of environmental governance.
Collapse
Affiliation(s)
- Luping Feng
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Jianghong Wang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Lixiang Zhang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China.
| | - Jiadong Li
- School of New Energy, Ningbo University of Technology, Ningbo, Zhejiang 313000, PR China
| | - Yifan Zhang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Minghong Xu
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Peisong Tang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, PR China
| |
Collapse
|
2
|
Liang L, Jin Z, Tao Y, Li Y, Zhao Z, Zhang Y. Enhanced Extracellular Electron Transfer in Magnetite-Mediated Anaerobic Oxidation of Methane Coupled to Humic Substances Reduction: The Pivotal Role of Membrane-Bound Electron Transfer Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17756-17765. [PMID: 39323212 DOI: 10.1021/acs.est.4c05543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Humic substances are organic substances prevalent in various natural environments, such as wetlands, which are globally important sources of methane (CH4) emissions. Extracellular electron transfer (EET)-mediated anaerobic oxidation of methane (AOM)-coupled with humic substances reduction plays an important role in the reduction of methane emissions from wetlands, where magnetite is prevalent. However, little is known about the magnetite-mediated EET mechanisms in AOM-coupled humic substances reduction. This study shows that magnetite promotes the reduction of the AOM-coupled humic substances model compound, anthraquinone-2,6-disulfonate (AQDS). 13CH4 labeling experiments further indicated that AOM-coupled AQDS reduction occurred, and acetate was an intermediate product of AOM. Moreover, 13CH313COONa labeling experiments showed that AOM-generated acetate can be continuously reduced to methane in a state of dynamic equilibrium. In the presence of magnetite, the EET capacity of the microbial community increased, and Methanosarcina played a key role in the AOM-coupled AQDS reduction. Pure culture experiments showed that Methanosarcina barkeri can independently perform AOM-coupled AQDS reduction and that magnetite increased its surface protein redox activity. The metatranscriptomic results indicated that magnetite increased the expression of membrane-bound proteins involved in energy metabolism and electron transfer in M. barkeri, thereby increasing the EET capacity. This phenomenon potentially elucidates the rationale as to why magnetite promoted AOM-coupled AQDS reduction.
Collapse
Affiliation(s)
- Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Wang Y, Huang F, Liu J, Rao X, Liu Q, Xiao R, Huang M, Li H, Bai J, Wang P, Zhou X. Ferric citrate enhanced bioreduction of Cr(VI) by Bacillus cereus RCr in aqueous solutions: reduction performance and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34394-4. [PMID: 39042195 DOI: 10.1007/s11356-024-34394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
The bioreduction characteristics and mechanisms of Cr(VI) onto Bacillus cereus RCr enhanced by ferric citrate were investigated. The optimum conditions were initial pH 9, temperature 40 °C, inoculation amount 4%, and glucose 3 g/L, respectively. The addition of 1.5 g/L ferric citrate increased the average reduction rate from 120.43 to 220.61 mg/(L∙h) compared with the control (without ferric citrate). The binding capacity of Cr(III) on the cell surface increased to 21%, in which the precipitates were mainly CrO(OH), Cr2O3, and FeCr2O4. Cell membrane was the main site of reduction, related important functional groups: - COOH, C-H, - NH2, C = C, and P-O. Fe(III) increased the yield of NADH and cytochrome c by approximately 48.51% and 68.63%, which significantly facilitated the electron generation and electron transfer, thus increasing the amount of electrons in the bioreduction of heavy metals by an average of 110%. Among the electrons obtained by Cr(VI), the proportion of indirect reduction mediated by Fe(III)/Fe(II) shuttle was 62% on average, whereas direct reduction mediated by reductase was 38%. These results may provide insights into the bioreduction process by bacteria enhanced by Fe(III) for detoxification of heavy metals with multiple valences, as an important step towards improving microbial remediation.
Collapse
Affiliation(s)
- Yishuo Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Fei Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
| | - Jiaxin Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xin Rao
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, 510420, P.R. China
| | - Qianjun Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Rongbo Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, P.R. China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou, 362300, P.R. China
| | - Haolin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jinjing Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Peng Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
4
|
Qin R, Zhang B, Huang Y, Song S, Zhang Z, Wen X, Zhong Z, Zhang F, Zhang T. The fate and transport of neonicotinoid insecticides and their metabolites through municipal wastewater treatment plants in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123968. [PMID: 38631448 DOI: 10.1016/j.envpol.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.
Collapse
Affiliation(s)
- Ronghua Qin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, 510530, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Ziqi Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaoyu Wen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhiqing Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fengru Zhang
- School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Xiao W, Zhang Q, Huang M, Zhao S, Chen D, Gao N, Chu T, Ye X. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities. CHEMOSPHERE 2024; 353:141636. [PMID: 38447895 DOI: 10.1016/j.chemosphere.2024.141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Luotong R, Gongsong L, Bin D, Zhenxi W, Sheng X, Siyu C, Danping H, Xiaoguang C. Temporal and spatial variations in the physical and chemical properties of anaerobic granular sludge within a Pilot Spiral Symmetry Stream Anaerobic Bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168390. [PMID: 37952660 DOI: 10.1016/j.scitotenv.2023.168390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Anaerobic granular sludge (AGS) determines the high performance of the bioreactor. To study the regionalization of granular sludge in the bioreactor, a Pilot Spiral Symmetry Stream Anaerobic Bioreactor (P-SSSAB) was established over 216 days, divided into three zones (I, II, and III) from bottom to top. AGS at the bottom of P-SSSAB had a higher porosity (60.35 %-83.27 %) and more suitable settling velocity (60 m/h) when the particle size range was 1.0-2.0 mm. This proved the better metabolic activity and superior settling performance in zone I than in zones II and III. In addition, the elemental composition of AGS in various zones was analyzed. The relative content of iron (5.66 %, 3.36 %, and 1.38 %, respectively) and sulfur (2.47 %, 2.19 %, and 1.49 %, respectively) in zone I, II, and III tended to decrease with the height of P-SSSAB. This also verified the better mass transfer performance and operational stability in lower zone than in upper zone. However, the monitoring of bed temperature in various zones revealed that the microbial activity in zone I was 6.7×10-12~3.5×10-2 times and 1.8×10-15~1.4×10-3 times that in zones II and III, respectively, which indicated that the unit activity of AGS in zone I was the worst. It indicated that AGS in lower zone had poor unit activity but had the highest unit capacity due to the high sludge concentration. Besides, the unit capacity of the upper zone was too weak to produce enough alkalinity to neutralize acid produced by excessive hydrolysis and acidification in lower zone, resulting in the worst treatment efficiency of the upper zone. Therefore, temperature and concentration ratios under various spatial distributions in bioreactors are vital to the overall sewage treatment stability and efficiency of bioreactors in actual engineering applications.
Collapse
Affiliation(s)
- Ren Luotong
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Gongsong
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dong Bin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wang Zhenxi
- College of Science, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xu Sheng
- College of Science, Nanchang Institute of Technology, Nanchang 330099, China
| | - Chen Siyu
- Sichuan Provincial Key Lab of Process Equipment and Control, School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huang Danping
- Sichuan Provincial Key Lab of Process Equipment and Control, School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chen Xiaoguang
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Qin R, Dai X, Xian Y, Zhou Y, Su C, Chen Z, Lu X, Ai C, Lu Y. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119398. [PMID: 37897905 DOI: 10.1016/j.jenvman.2023.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Methane-driven hexavalent chromium (Cr(VI)) reduction in a microbial fuel cell (MFC) has attracted much attention. However, whether the presence of sulfate (SO42-) affects the reduction of Cr(VI) is still lacking in systematic studies. This study involved constructing a MFC-granular sludge (MFC-GS) coupling system with dissolved methane (CH4) was used as the electron donor to investigate the effect of SO42- on Cr(VI) bioreduction, sludge characteristic, and functional metabolic mechanisms. When the SO42- concentration was 10 mg/L, the average removal rate of Cr(VI) in the anaerobic stage decreased to the lowest value (22.25 ± 2.06%). Adding 10 mg/L SO42- obviously inhibited the electrochemical performance of the system. Increasing SO42- concentration weakened the fluorescence peaks of tryptophan and aromatic proteins in the extracellular polymeric substance of sludge. Under the influence of SO42-, Methanothrix_soehngenii decreased from 14.44% to 5.89%. The relative abundance of methane metabolic was down-regulated from 1.47% to 0.98%, while the sulfur metabolic was up-regulated from 0.09% to 0.21% when SO42- was added. These findings provided some reference for the treatment of wastewater containing Cr(VI) and SO42- complex pollutants in the MFC-GS coupling system.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chenbing Ai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|