1
|
Wu L, Li H, Gu Y, Shen Z, Zhou Y, Zuo J. Integrating dual-stage gas permeable membranes and humic acid recovery to optimize fenton oxidation of landfill leachate: Insights into full-process performance and DOM molecular-level transformation. WATER RESEARCH 2025; 280:123525. [PMID: 40174423 DOI: 10.1016/j.watres.2025.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
This research introduces an innovative full-process treatment technology that integrates dual-stage gas permeable membranes (GPM) and humic acid (HA) recovery to enhance Fenton oxidation of landfill leachate (LFL). In terms of full-process performance, this integrated approach (LFL-GPM-HA (Fenton)) synergistically combines LFL concentration, ammonia recovery, HA recovery, purified water reclamation, and efficient Fenton oxidation, thereby achieving holistic minimization, detoxification, and resource recovery of LFL. Specifically, under the conditions of low-intensity aeration and a temperature gradient of 65-55-25 °C, the GPM achieved an ammonia recovery rate exceeding 96 %, while the LFL was concentrated by a factor of 4.72 within 12 h. During HA recovery at pH 2, the HA yield from the concentrated LFL reached 3.68 g/L, representing an 88.72 % increase compared to the raw LFL. Due to the significant consumption of bicarbonate alkalinity during the GPM process, the required dosage of H₂SO₄ per gram of HA recovered was reduced by 86.72 %. Under different dimensionless oxidant dosages, the LFL-GPM-HA (Fenton) demonstrated a significant improvement in COD removal efficiency compared to standalone Fenton oxidation. In terms of dissolved organic matter (DOM) molecular-level transformation, ESI FT-ICR-MS analysis showed a significant enhancement in the removal of CHOS and CHONS in LFL-GPM-HA (Fenton), with a concurrent reduction in the produced sulfurous byproducts. Additionally, the LFL-GPM-HA (Fenton) notably increased the frequency of decarboxylation, desulfurization, and dealkylation reactions. In terms of operational stability and economic feasibility, this integrated system demonstrates excellent long-term stability and robust membrane fouling-cleaning recovery properties, achieving LFL treatment at a cost of approximately 12.142 $/m³, which is significantly more cost-effective than conventional full-process advanced treatment technologies (20-30 $/m³). In conclusion, the findings offer a pathway for developing more efficient and cost-effective strategies for LFL management.
Collapse
Affiliation(s)
- Linjun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyue Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Park J, Lee C, Kim Y, Lee D, Choe JK, Choi Y. Direct solid-phase nitrogenous fertilizer recovery from wastewater: The hybrid system of membrane contactor and solvent-driven fractional crystallization. WATER RESEARCH 2025; 278:123372. [PMID: 40022804 DOI: 10.1016/j.watres.2025.123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/24/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
We propose a novel configuration that integrates a membrane contactor with solvent-driven fractional crystallization (SDFC) to recover ammonia from wastewater and produce it as solid-phase nitrogenous fertilizers. A liquid-gas membrane contactor strips ammonia from wastewater in a gaseous form, which enters a strip tank containing a binary mixture of an aqueous anion solution and an organic solvent. There, the ammonia reacts with anions, instantly protonating and forming solid-phase fertilizers. Batch SDFC experiments identified phosphate and sulfate as viable options for producing solid-phase fertilizers from the ammonia gas entering the strip tank. The hybrid system utilizing these acids produced high-grade fertilizers free from soil acidification concerns: a mixture of monoammonium phosphate and diammonium phosphate, and pure ammonium sulfate. Ammonium sulfate crystals in the strip tank grew epitaxially, representing a unique ammonium sulfate crystallization pattern when ammonium concentration gradually increased to supersaturation. A single system run produced solid fertilizers that amounted to 81.54 and 83.84% of the initially added phosphoric and sulfuric acid, respectively. Organic solvents in the strip tank could be recycled for at least five cycles while maintaining crystallization efficiencies of ≥82.63%. These results highlight the potential for semi-permanent operation of the system without the need for solvent replenishment.
Collapse
Affiliation(s)
- Jaebeom Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Sosa M, Levy IK, Butt HJ, Kappl M. Nanofilament-Coated Membranes with Enhanced Scaling and Biofouling Resistance for Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24588-24600. [PMID: 40230282 PMCID: PMC12022982 DOI: 10.1021/acsami.5c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Membrane distillation (MD) for water treatment can be applied in high salinity conditions and for treatment of wastewater. Current commercial membranes are made of fluorinated polymers such as polytetrafluoroethylene (PTFE). Here, porous membranes were coated with a silicone nanofilament layer to obtain a superhydrophobic and fluorine-free material. The classical coating procedure involves the use of toluene as a solvent. In this work, n-heptane was tested as a less toxic alternative. Different porous membranes were tested as the substrates of the nanofilament coating. The effect of acids, scaling solutions, and biofilm formation was analyzed in comparison to standard PTFE membranes. We demonstrate that superhydrophobic nanofilament-coated poly(ether sulfone) membranes (NF-PES) possess the required antiwetting properties for MD. Moreover, NF-PES membranes have static contact angles between 10 and 20° higher than PTFE standard membranes after immersion tests in solutions containing scaling substances, and biofilm grows from 20 to 50%, less in NF-PES than in PTFE.
Collapse
Affiliation(s)
- Mariana
D. Sosa
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ivana K. Levy
- Instituto
de Química Física de Materiales, Ambiente y Energía
(INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón
2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Hans-Jürgen Butt
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Michael Kappl
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
4
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
5
|
Ji Z, Wang J, Yan Z, Liu C, Liu Z, Chang H, Qu F, Liang H. Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment. WATER RESEARCH 2024; 266:122332. [PMID: 39216126 DOI: 10.1016/j.watres.2024.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 μS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 μS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.
Collapse
Affiliation(s)
- Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, 710055, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Zhang K, Cheng P, Liu Y, Xia S. Efficient removal of per- and polyfluoroalkyl substances by a metal-organic framework membrane with high selectivity and stability. WATER RESEARCH 2024; 265:122276. [PMID: 39154397 DOI: 10.1016/j.watres.2024.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
7
|
Hu Y, Loh CY, Xie M, Chen G, Huang M, Qiao J. Ammonia recovery via direct contact membrane distillation: Modeling and performance optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121683. [PMID: 38963968 DOI: 10.1016/j.jenvman.2024.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.
Collapse
Affiliation(s)
- Yuan Hu
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ching Yoong Loh
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Gang Chen
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Manhong Huang
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jinli Qiao
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
8
|
Guo Z, Qu F, Wang J, Geng M, Gao S, Tian J. Enhancing electron transfer in anaerobic process by supercapacitor materials: Polyaniline functionated activated carbon. BIORESOURCE TECHNOLOGY 2024; 406:131051. [PMID: 38944315 DOI: 10.1016/j.biortech.2024.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome C (Cyt-C). The content of coenzyme F420 on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.
Collapse
Affiliation(s)
- Zijing Guo
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jie Wang
- School of Environmental Science and Technology, Tiangong University, Tianjin 300387, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
9
|
Lei J, Qi R, Tumrani SH, Dong L, Jia H, Lei P, Yang Y, Feng C. Selective stepwise adsorption for enhanced removal of multi-component dissolved organic chemicals from petrochemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169600. [PMID: 38151126 DOI: 10.1016/j.scitotenv.2023.169600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The coexistence of multi-component dissolved organic chemicals causes tremendous challenge in purifying petrochemical wastewater, and stepwise selective adsorption holds the most promise for enhanced treatments. This study is designed to enhance the removal of multiple dissolved organic chemicals by stepwise adsorption. Special attention is given to the selective removal mechanisms for the major pollutant N,N-dimethylformamide (DMF), the sensitive pollutant fluorescent dissolved organic matter (FDOM) and other components. The results indicated that the combination of coal activated carbon and aluminum silica gel produced a synergistic effect and broke the limitation of removing only certain pollutants. Combined removal rates of 80.5 % for the dissolved organic carbon and 86.7 % for the biotoxicity in petrochemical wastewater were obtained with the enhanced two-step adsorption. The adsorption performance of both adsorbents remained stable even after five cycles. The selective adsorption mechanism revealed that hydrophobic organics such as DMF was adsorbed by the macropores of coal activated carbon, while the FDOM was eliminated by π-π stacking, electrostatic interaction and hydrophobic interaction. The hydrophilic organics were removed by the mesopores of aluminum silica gel, the silica hydroxyl groups and hydrophilic interaction. This study provides a comprehensive understanding of the selective adsorption mechanism and enhanced stepwise removal of multiple pollutants in petrochemical wastewater, which will guide the deep treatment of complex wastewater.
Collapse
Affiliation(s)
- Jinming Lei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, PR China
| | - Sadam Hussain Tumrani
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lili Dong
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, PR China
| | - Huixian Jia
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, PR China
| | - Peng Lei
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, PR China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|