1
|
An L, Zhang X, Lu J, Wan J, Liu Y. Valorization of food waste to biofertilizer and carbon source for denitrification with assistance of plant ash and biochar toward zero solid discharge. BIORESOURCE TECHNOLOGY 2025; 420:132119. [PMID: 39894180 DOI: 10.1016/j.biortech.2025.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
This study developed a novel strategy for food waste (FW) valorization through incorporating plant ash and biochar into enzymatic hydrolysis of FW. After 12-h hydrolysis of FW with fungal mash, the solid and soluble products were separated and harvested as solid biofertilizer and carbon source for denitrification respectively. Soluble COD produced from plant ash and biochar mediated FW hydrolysis could reach approximately 170 g/L on average, which showed a specific denitrification rate of 26.23-31.33 mg N/g MLVSS/h higher than that with commercial glucose (i.e. 25.92 mg N/g MLVSS/h). The applicability of solid biofertilizers produced from plant ash- or biochar-assisted hydrolysis of FW was evidenced by the higher germination rate of 138-166 % against that without exogeneous additives (122 %). It is expected that the proposed approach can offer an effective solution for upgrading FW into value-added products, while realizing a complete resource recycle with no wastes discharged.
Collapse
Affiliation(s)
- Lei An
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jinfeng Lu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Yin J, Jin J, Wang J, Fang H, Yu X, He J, Chen T. Targeted volatile fatty acid production based on lactate platform in mixed culture fermentation: Insights into carbon conversion and microbial metabolic traits. BIORESOURCE TECHNOLOGY 2025; 417:131835. [PMID: 39551394 DOI: 10.1016/j.biortech.2024.131835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
In this study, the effects of fermentation pH and redox potential on the performance of the lactate platform were comprehensively evaluated. The results indicated that the type of acidogenic fermentation was influenced by redox potential, while pH was correlated with volatile fatty acid yield. The highest propionate yield was achieved under anaerobic conditions at a pH of9, with the dominant genus Serpentinicella producing propionate through the acrylate pathway. The highest acetate yield was produced under facultative conditions at a pH of 6. This production was primarily facilitated by the dominant genera unclassified_f__Enterobacteriaceae and Desulfovibrio, which exhibited significant upregulation of the expression of related genes. Furthermore, ecological processes were employed to establish the relationship between environmental factors and microbial communities. This study emphasized the process of converting lactate into volatile fatty acid, providing a theoretical basis for future strategies aimed at regulating targeted acid production.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jianyu Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jing Wang
- Zhejiang Institute of Hydraulics & Estuary, Hangzhou 310017, PR China
| | - Hongwei Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoqin Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jie He
- Zhejiang Zhili Environment Protection Technology Co., Ltd, Jinhua 321000, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
3
|
Sheng K, Miao H, Ni J, Yang K, Gu P, Ren X, Xiong J, Zhang Z. Deeper insight into the storage time of food waste on black soldier fly larvae growth and nutritive value: Interactions of substrate and gut microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175759. [PMID: 39182769 DOI: 10.1016/j.scitotenv.2024.175759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Biological treatment of food waste (FW) by black soldier fly larvae (BSFL) is considered as an effective management strategy. The composition and concentrations of nutrients in FW change during its storage and transport period, which potentially affect the FW conversion and BSFL growth. The present study systematically investigated the effect of different storage times (i.e., 0-15 d) on FW characteristics and its substantial influence on the BSFL growth. Results showed that the highest larvae weight of 282 mg and the shortest growth time of 14 days were achieved at the group of FW stored for 15 days, but shorter storage time (i.e., 2-7 d) had adverse effect on BSFL growth. Short storage time (i.e., 2-4 d) improved protein content of BSFL biomass and prolonged storage time (i.e., 7-10 d) led to the accumulation of fat content. The changes of substrate characteristics and indigenous microorganisms via FW storage time were the main reasons for BSFL growth difference. Lactic acid (LA) accumulation (i.e., 19.84 g/L) in FW storage for 7 days significantly limited the BSFL growth, leading to lowest larvae weight. Both the substrate and BSFL gut contained same bacterial communities (e.g., Klebsiella and Proteus), which exhibited similar change trend with the prolonged storage time. The transfer of Clostridioides from substrate to BSFL gut promoted nutrients digestion and intestinal flora balance with the FW stored for 15 days. Pathogens (e.g., Acinetobacter) in BSFL gut feeding with FW storage time of 7 days led to the decreased digestive function, consistent with the lowest larvae weight. Overall, shorter storage time (i.e., 2-7 d) inhibited the BSFL digestive function and growth performance, while the balance of the substrate nutrients and intestinal flora promoted the BSFL growth when using the FW stored for 15 days.
Collapse
Affiliation(s)
- Kuang Sheng
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Ni
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianglei Xiong
- China Electronics Innovation Environmental Technology Co. Ltd, Wuxi 214111, PR China
| | - Zengshuai Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Wang Y, Li H, Ding K, Zhao X, Liu M, Xu L, Gu L, Li J, Li L, He Q, Liang J. Improved anaerobic digestion of food waste under ammonia stress by side-stream hydrogen domestication. WATER RESEARCH 2024; 268:122770. [PMID: 39541850 DOI: 10.1016/j.watres.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
High ammonia concentration inhibits archaea's activity, causing the accumulation of H2 and acetate, which suppresses methane production in anaerobic digestion (AD). The study aimed to enhance microbial hydrogen metabolism through a side-stream hydrogen domestication (SHD) strategy, which involves applying hydrogen stimulation to a portion of the sludge separately. SHD maintained a stable methane yield of 407.5 mL/g VS at a high total ammonia nitrogen (TAN) concentration of 3.1 g/L. In contrast, the control group gradually decreased and stopped methane production at a TAN concentration of 2.3 g/L. Further analysis using enzyme activity assays, flow cytometry, and metagenomics explored the mechanisms underlying ammonia tolerance of SHD-treated group. SHD reshaped the microbial community, enriching homoacetogens and Methanosaeta-dominated methanogenic archaea. Key metabolic pathways including homoacetogenesis, butyrate degradation, propionate degradation, and methane production were enhanced. The activity of related enzymes also increased. Gene abundance in energy-generating pathways, such as glycolysis, was enhanced, ensuring adequate ATP production. Additionally, the high gene abundance of ion transport systems contributed to regulating proton imbalance and supplementing intracellular K+. This study provides important insights and practical guidance for developing novel techniques in the field of anaerobic digestion.
Collapse
Affiliation(s)
- Yi Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Haoyang Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Keke Ding
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xueyu Zhao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qiang He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jianjun Liang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
5
|
Mineo A, van Loosdrecht MMC, Mannina G. Assessing the aerobic/anoxic enrichment efficiency at different C/N ratios: polyhydroxyalkanoate production from waste activated sludge. WATER RESEARCH 2024; 268:122687. [PMID: 39488060 DOI: 10.1016/j.watres.2024.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Polyhydroxyalkanoates (PHA) can be produced using fermentation products of an excess sewage sludge fermentation process. An efficient method to enrich a PHA-producing community is an aerobic-feast/anoxic-famine enrichment strategy. The effect of different carbon to nitrogen (C/N) feed ratios of 1, 2 and 3.5 g COD/g N on the process performance was studied. The study was executed on a pilot plant scale using fermented waste activated sludge as the organic carbon source. The system's performance was monitored in terms of removing contaminants, producing PHA, and reducing N2O emissions. The results indicated that a lower C/N ratio results in lower PHA production, with PHA content in the sludge of 20, 24 and 36 % w/w for C/N ratios of 1, 2 and 3.5 g COD/g N, respectively. At the lowest C/N ratio, the highest nitrite accumulation rate (77 %), nitrification efficiency (89 %) and denitrification efficiency (89 %) were observed, but the N2O production was also the highest (0.77 mg N2O-N/L). The long-term comprehensive monitoring carried out in this study revealed high carbon and ammonia removal efficiencies (never below 80 %) despite the C/N shifts and high COD and ammonia concentrations. At the same time, the system showed relatively low PHA production and high environmental impact in terms of high gaseous N2O emission. These findings question the sustainability of the aerobic-feast/anoxic-famine enrichment strategy for PHA production in full-scale plants.
Collapse
Affiliation(s)
- Antonio Mineo
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, Palermo 90128, Italy
| | - Mark M C van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, Palermo 90128, Italy.
| |
Collapse
|
6
|
Wu M, Wang H. Re-considering and designing microbiomes for future waste biorefinery. Microb Biotechnol 2024; 17:e14395. [PMID: 38206186 PMCID: PMC10835331 DOI: 10.1111/1751-7915.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
It is an increasingly promising research direction using microbiomes to produce various chemicals in order to support people's growing need for sustainability. Currently, bottom-up constructed defined microbiomes and top-down constructed undefined microbiomes play an essential role in the fields of synthetic biology and environmental engineering, respectively. However, if we are goal-oriented and want to align scientific principles with technology and engineering in future waste biorefinery, we need to reconsider and design microbiomes interdisciplinarily. In this editorial, we briefly review the latest applications of two approaches to microbiome design (bottom-up and top-down) and the dilemmas faced in using complex waste. Consequently, we introduce the concept of 'sustainable synthetic microbiomics' to apply combined bottom-up and top-down constructed microbiomes to provide products for human needs from low-value waste. Furthermore, we outline the relatively comprehensive research contents and expected prospects based on the pressing problems. Finally, burning questions on key research contents are proposed for specific cases, hoping to provide valuable views for future microbiome biorefinery.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| |
Collapse
|
7
|
Mannina G, Mineo A. Polyhydroxyalkanoate production from fermentation of domestic sewage sludge monitoring greenhouse gas emissions: A pilot plant case study at the WRRF of Palermo University (Italy). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119423. [PMID: 37871545 DOI: 10.1016/j.jenvman.2023.119423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
This paper presents a comprehensive study on polyhydroxyalkanoate (PHA) production from sewage sludge. Greenhouse gas (GHG) emissions were monitored for the first time to assess the impact of climate change and environmental sustainability. The pilot plant was composed of a fermenter with a membrane and two biological reactors (namely, selection and accumulation). Results showed that despite a low organic loading rate (namely, 0.06 kg BOD kg SS-1 day-1), a good PHA yield was obtained (namely, 0.37 g PHA/g volatile fatty acids), confirming that sewage sludge can be a suitable feedstock. GHG emissions were 3.85E-04 g CO2eq/g and 32.40 g CO2eq/g, direct and indirect, respectively. Results provided valuable insights in view of finding a trade-off between PHA production and GHG emissions to prove the PHA production process as an effective solution for biosolids disposal at a low carbon footprint.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| | - Antonio Mineo
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128, Palermo, Italy.
| |
Collapse
|