1
|
Gao R, Ding H, Gu M, Chen C, Sun Y, Xin Y, Liang S, Huang X. Mild Tuning of the Microbial Habitat via Titanium-Based Pre-coagulation Mitigates Reverse Osmosis Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40391935 DOI: 10.1021/acs.est.5c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Membrane fouling remains a persistent challenge in reverse osmosis (RO) systems. Devising effective strategies to mitigate membrane fouling has become crucial for sustainable water treatment. Here, we propose a titanium-based pre-coagulation strategy for RO fouling mitigation through regulation of the microbial habitat in RO feed. The pre-coagulation performance of Ti(SO4)2 for desulfurization wastewater and the subsequent RO fouling mechanism were systematically investigated. Our findings revealed that the Ti pre-coagulation induced an acidized environment, maintained a balance between organic and inorganic depositions, and fostered a beneficial microbial community that resisted rapid fouling. The 20 day RO operations in different pre-coagulation scenarios (Ti, Al, and Ctrl) showed that the Ti group membranes maintained the highest normalized flux at 57.15%, outperforming the Ctrl and Al groups by 7.92% and 15.16%, respectively. Microbial community analyses, including taxonomic profiling and metagenomic analysis, demonstrated that Ti-based pre-coagulation reduced the dominance of extracellular polymeric substance (EPS)-secreting genera, such as Sphingopyxis, while promoting Terrimonas and Paenarthrobacter, with acid-tolerance traits and reduced EPS production. This shift mitigated biofouling by enhancing microbial balance and limiting biofilm formation. These results underscored the potential of the Ti pre-coagulation-based microbial habitat tuning strategy in enhancing RO system sustainability, offering a practical solution for improving industrial wastewater treatment.
Collapse
Affiliation(s)
- Ruonan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Haojie Ding
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yajun Sun
- Beijing Originwater Membrane Technology Company, Limited, Beijing 100097, People's Republic of China
| | - Yuchen Xin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Qiu Z, Wang H, Dai R, Wang Z. Enhancing Silica Scaling Resistance and Perm-Selectivity of Reverse Osmosis Membranes via Increased Charge Density and Suppressed Coordination Capacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5370-5381. [PMID: 40052783 DOI: 10.1021/acs.est.4c13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Silica scaling poses a substantial challenge in the advanced treatment of industrial wastewater by reverse osmosis (RO) membranes, while the existing methods modifying RO membranes to enhance antisilica scaling performance often compromise water permeance. Herein, we fabricated a sulfonated RO membrane (SLRO) using sodium lignosulfonate as a comonomer, achieving an enhanced charge density and reduced coordination capacity. SLRO exhibited superior antisilica scaling performance, reducing scaling rates by ∼145, ∼166, and ∼157% under acidic, neutral, and alkaline conditions compared to the control. Reduced density gradient analysis confirmed that sulfonic acid groups (-SO3H) on the SLRO surface increased the repulsion of silicic acid. Moreover, the SLRO demonstrated reductions of ∼112, ∼137, and ∼133% in cation-mediated silica scaling rates under the same conditions, attributed to the weaker coordination between -SO3H and cations, which diminished the cation-bridging effect. Furthermore, SLRO membranes exhibited high pure water permeance (3.3 L m-2 h-1 bar-1) and NaCl rejection (99.2%), with a water/NaCl selectivity (7.8 bar-1) three times greater than that of the control (2.6 bar-1), primarily attributed to increased surface roughness and reduced apparent thickness of the PA layer. Our work provides a robust strategy for fabricating silica scaling-resistant RO membranes with improved perm-selectivity.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Hailan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Zheng L, Zhong H, Wang Y, Duan N, Ulbricht M, Wu Q, Van der Bruggen B, Wei Y. Mixed scaling patterns and mechanisms of high-pressure nanofiltration in hypersaline wastewater desalination. WATER RESEARCH 2024; 250:121023. [PMID: 38113598 DOI: 10.1016/j.watres.2023.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Nanofiltration (NF) will play a crucial role in salt fractionation and recovery, but the complicated and severe mixed scaling is not yet fully understood. In this work, the mixed scaling patterns and mechanisms of high-pressure NF in zero-liquid discharge (ZLD) scenarios were investigated by disclosing the role of key foulants. The bulk crystallization of CaSO4 and Mg-Si complexes and the resultant pore blocking and cake formation under high pressure were the main scaling mechanisms in hypersaline desalination. The incipient scalants were Mg-Si hydrates, CaF2, CaCO3, and CaMg(CO3)2. Si deposited by adsorption and polymerization prior to and impeded Ca scaling when Mg was not added, thus pore blocking was the main mechanism. The amorphous Mg-Si hydrates contribute to dense cake formation under high hydraulic pressure and permeate drag force, causing rapid flux decline as Mg was added. Humic acid has a high affinity to Ca2+by complexation, which enhances incipient scaling by adsorption or lowers the energy barrier of nucleation but improves the interconnectivity of the foulants layer and inhibits bulk crystallization due to the chelation and directional adsorption. Bovine serum albumin promotes cake formation due to the low electrostatic repulsion and acts as a cement to particles by adsorption and bridging in bulk. This work fills the research gaps in mixed scaling of NF, which is believed to support the application of ZLD and shed light on scaling in hypersaline/ultra-hypersaline wastewater desalination applications.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxiang Wang
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningxin Duan
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Qiyang Wu
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Yao Y, Ge X, Yin Y, Minjarez R, Tong T. Antiscalants for mitigating silica scaling in membrane desalination: Effects of molecular structure and membrane process. WATER RESEARCH 2023; 246:120701. [PMID: 37837901 DOI: 10.1016/j.watres.2023.120701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Silica scaling is a major type of mineral scaling that significantly constrains the performance and efficiency of membrane desalination. While antiscalants have been commonly used to control mineral scaling formed via crystallization, there is a lack of antiscalants for silica scaling due to its unique formation mechanism of polymerization. In this study, we performed a systematic study that investigated and compared antiscalants with different functional groups and molecular weights for mitigating silica scaling in membrane distillation (MD) and reverse osmosis (RO). The efficiencies of these antiscalants were tested in both static experiments (for hindering silicic acid polymerization) as well as crossflow, dynamic MD and RO experiments (for reducing water flux decline). Our results show that antiscalants enriched with strong H-accepters and H-donors were both able to hinder silicic acid polymerization efficiently in static experiments, with their antiscaling performance being a function of both molecular functionality and weight. Although poly(ethylene glycol) (PEG) with abundant H-accepters exhibited high antiscaling efficiencies during static experiments, it displayed limited performance of mitigating silica scaling during MD and RO. Poly (ethylene glycol) diamine (PEGD), which has a PEG backbone but is terminated by two amino groups, was efficient to both hinder silicic acid polymerization and reduce water flux decline in MD and RO. Antiscalants enriched with H-donors, such as poly(ethylenimine) (PEI) and poly(amidoamine) (PAMAM), were effective of extending the water recovery of MD but conversely facilitated water flux decline of RO in the presence of supersaturated silica. Further analyses of silica scales formed on the membrane surfaces confirmed that the antiscalants interacted with silica via hydrogen bonding and showed that the presence of antiscalants governed the silica morphology. Our work indicates that discrepancy in antiscalant efficiency exists between static experiments and dynamic membrane filtration as well as between different membrane processes associated with silica scaling, providing valuable insights on the design principle and mechanisms of antiscalants tailored to silica scaling.
Collapse
Affiliation(s)
- Yiqun Yao
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Xijia Ge
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronny Minjarez
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|