1
|
Eichstaedt CA, Mairbäurl H, Song J, Benjamin N, Fischer C, Dehnert C, Schommer K, Berger MM, Bärtsch P, Grünig E, Hinderhofer K. Genetic Predisposition to High-Altitude Pulmonary Edema. High Alt Med Biol 2020; 21:28-36. [PMID: 31976756 DOI: 10.1089/ham.2019.0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Exaggerated pulmonary arterial hypertension (PAH) is a hallmark of high-altitude pulmonary edema (HAPE). The objective of this study was therefore to investigate genetic predisposition to HAPE by analyzing PAH candidate genes in a HAPE-susceptible (HAPE-S) family and in unrelated HAPE-S mountaineers. Materials and Methods: Eight family members and 64 mountaineers were clinically and genetically assessed using a PAH-specific gene panel for 42 genes by next-generation sequencing. Results: Two otherwise healthy family members, who developed re-entry HAPE at 3640 m during childhood, carried a likely pathogenic missense mutation (c.1198T>G p.Cys400Gly) in the Janus Kinase 2 (JAK2) gene. One of them progressed to a mild form of PAH at the age of 23 years. In two of the 64 HAPE-S mountaineers likely pathogenic variants have been detected, one missense mutation in the Cytochrome P1B1 gene, and a deletion in the Histidine-Rich Glycoprotein (HRG) gene. Conclusions: This is the first study identifying an inherited missense mutation of a gene related to PAH in a family with re-entry HAPE showing a progression to borderline PAH in the index patient. Likely pathogenic variants in 3.1% of HAPE-S mountaineers suggest a genetic predisposition in some individuals that might be linked to PAH signaling pathways.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jie Song
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Nicola Benjamin
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christine Fischer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Kai Schommer
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc M Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bärtsch
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|