1
|
Eboshida N, Hamada A, Higaki M, Obayashi F, Ito N, Yamasaki S, Tani R, Shintani T, Koizumi K, Yanamoto S. Potential role of circulating tumor cells and cell-free DNA as biomarkers in oral squamous cell carcinoma: A prospective single-center study. PLoS One 2024; 19:e0309178. [PMID: 39729421 DOI: 10.1371/journal.pone.0309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 12/29/2024] Open
Abstract
Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer. Hence, this study aimed to determine the potential role of liquid biopsy, circulating tumor cells, and cell-free DNA as biomarkers of oral squamous cell carcinoma. Thirteen patients with primary oral squamous cell carcinoma who visited our hospital between 2022 and 2023 were recruited, and plasma samples were collected from each patient preoperatively and postoperatively. We examined the relationship between the prognosis, the number of circulating tumor cells per four milliliters of peripheral blood, and the amount of cell-free DNA per milliliter of serum or the gene mutation in cell-free DNA. We observed no correlation between the number of preoperative circulating tumor cells and metastatic events. However, the number of circulating tumor cell clusters or the amount of preoperative cell-free DNA in metastatic cases was higher than that in non-metastatic cases. In oral squamous cell carcinoma, circulating tumor cell clusters or cell-free DNA levels may help inform management decisions regarding metastasis. However, further studies are required to provide a possible window for therapeutic interventions.
Collapse
Affiliation(s)
- Natsuki Eboshida
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mirai Higaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumitaka Obayashi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nanako Ito
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryouji Tani
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Rahman MM, Hossain MM, Islam S, Ahmed R, Majumder M, Dey S, Kawser M, Sarkar B, Himu MER, Chowdhury AA, Ahmed S, Biswas S, Anwar MM, Hussain MJ, Kumar Shil R, Baidya S, Parial R, Islam MM, Bharde A, Jayant S, Aland G, Khandare J, Uddin SB, Noman ASM. CTC together with Shh and Nrf2 are prospective diagnostic markers for HNSCC. BMC Mol Cell Biol 2024; 25:4. [PMID: 38336617 PMCID: PMC10858504 DOI: 10.1186/s12860-024-00500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The lack of appropriate prognostic biomarkers remains a significant obstacle in the early detection of Head and Neck Squamous Cell Carcinoma (HNSCC), a cancer type with a high mortality rate. Despite considerable advancements in treatment, the success in diagnosing HNSCC at an early stage still needs to be improved. Nuclear factor erythroid 2-related factor 2 (Nrf2) and Sonic Hedgehog (Shh) are overexpressed in various cancers, including HNSCC, and have recently been proposed as possible therapeutic targets for HNSCC. Circulating Tumor Cell (CTC) is a novel concept used for the early detection of cancers, and studies have suggested that a higher CTC count is associated with the aggressiveness of HNSCC and poor survival rates. Therefore, we aimed to establish molecular markers for the early diagnosis of HNSCC considering Shh/Nrf2 overexpression in the background. In addition, the relation between Shh/Nrf2 and CTCs is still unexplored in HNSCC patients. METHODS In the present study, we selected a cohort of 151 HNSCC patients and categorized them as CTC positive or negative based on the presence or absence of CTCs in their peripheral blood. Data on demographic and clinicopathological features with the survival of the patients were analyzed to select the patient cohort to study Shh/Nrf2 expression. Shh and Nrf2 expression was measured by qRT-PCR. RESULTS Considering significant demographic [smoking, betel leaf (p-value < 0.0001)] and clinicopathological risk factors [RBC count (p < 0.05), Platelet count (p < 0.05), Neutrophil count (p < 0.005), MCV (p < 0.0001), NLR (p < 0.05), MLR (p < 0.05)], patients who tested positive for CTC also exhibited significant overexpression of Shh/Nrf2 in both blood and tissue compared to CTC-negative patients. A strong association exists between CTCs and tumor grade. Following chemotherapy (a combination of Cisplatin, 5FU, and Paclitaxel), the frequency of CTCs was significantly decreased in patients with HNSCC who had tested positive for CTCs. The Kaplan-Meier plot illustrated that a higher number of CTCs is associated with poorer overall survival (OS) in patients with HNSCC. CONCLUSIONS Detecting CTCs, and higher expression of Shh and Nrf2 in HNSCC patients' blood, can be a promising tool for diagnosing and prognosticating HNSCC.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Rangamati Medical College, Rangamati, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Muhammad Mosaraf Hossain
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh.
- EuGEF Research Foundation, Chattogram, Bangladesh.
| | - Shafiqul Islam
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
- Present Address: Stem Cell Genetics, Institute of Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ridwan Ahmed
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mohit Majumder
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Shantu Dey
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Md Kawser
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Bishu Sarkar
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Md Ejajur Rahman Himu
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Ali Asgar Chowdhury
- Department of Radiotherapy, Chittagong Medical College, Chattogram, Bangladesh
| | - Shakera Ahmed
- Department of Surgery, Chittagong Medical College, Chattogram, Bangladesh
| | - Supran Biswas
- Department of Otolaryngology and Head Neck Surgery, Chittagong Medical College, Chattogram, Bangladesh
| | - Mostafa Mahfuzul Anwar
- Department of Otolaryngology and Head Neck Surgery, Chittagong Medical College, Chattogram, Bangladesh
| | - Mohammad Jamal Hussain
- Department of Otolaryngology and Head Neck Surgery, Rangamati Medical College, Rangamati, Bangladesh
| | - Rajib Kumar Shil
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Sunanda Baidya
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Ramendu Parial
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mohammed Moinul Islam
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Atul Bharde
- Actorious Innovations and Research Pvt. Ltd., India and Simi Valley, Pune, CA, USA
| | - Sreeja Jayant
- Actorious Innovations and Research Pvt. Ltd., India and Simi Valley, Pune, CA, USA
| | - Gourishankar Aland
- Actorious Innovations and Research Pvt. Ltd., India and Simi Valley, Pune, CA, USA
| | - Jayant Khandare
- Actorious Innovations and Research Pvt. Ltd., India and Simi Valley, Pune, CA, USA
| | | | - Abu Shadat Mohammod Noman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh.
- EuGEF Research Foundation, Chattogram, Bangladesh.
| |
Collapse
|
3
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, Khandare J, Quadir M. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym 2024; 323:121418. [PMID: 37940250 DOI: 10.1016/j.carbpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Camden Boyle
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Kayla B Molina
- Department of Biomedical Engineering, The University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alain D'Souza
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune, India; School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; School of Consciousness, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA.
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA.
| |
Collapse
|
4
|
Sisodiya S, Kasherwal V, Khan A, Roy B, Goel A, Kumar S, Arif N, Tanwar P, Hussain S. Liquid Biopsies: Emerging role and clinical applications in solid tumours. Transl Oncol 2023; 35:101716. [PMID: 37327582 PMCID: PMC10285278 DOI: 10.1016/j.tranon.2023.101716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Late detection and lack of precision diagnostics are the major challenges in cancer prevention and management. Biomarker discovery in specific cancers, especially at the pre-invasive stage, is vital for early diagnosis, positive treatment response, and good disease prognosis. Traditional diagnostic measures require invasive procedures such as tissue excision using a needle, an endoscope, and/or surgical resection which can be unsafe, expensive, and painful. Additionally, the presence of comorbid conditions in individuals might render them ineligible for undertaking a tissue biopsy, and in some cases, it is difficult to access tumours depending on the site of occurrence. In this context, liquid biopsies are being explored for their clinical significance in solid malignancies management. These non-invasive or minimally invasive methods are being developed primarily for identification of biomarkers for early diagnosis and targeted therapeutics. In this review, we have summarised the use and importance of liquid biopsy as significant tool in diagnosis, prognosis prediction, and therapeutic development. We have also discussed the challenges that are encountered and future perspective.
Collapse
Affiliation(s)
- Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Vishakha Kasherwal
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kumar
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Nazneen Arif
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
5
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
6
|
Baa AK, Sharma A, Bhaskar S, Biswas A, Thakar A, Kumar R, Jayant S, Aland G, D’Souza A, Jadhav V, Bharde A, Khandare J, Pramanik R. Role of circulating tumour cells (CTCs) in recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). Ecancermedicalscience 2023; 17:1578. [PMID: 37533950 PMCID: PMC10393317 DOI: 10.3332/ecancer.2023.1578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 08/04/2023] Open
Abstract
Background Liquid biopsy is emerging as a non-invasive tool, providing a personalized snapshot of a primary and metastatic tumour. It aids in detecting early metastasis, recurrence or resistance to the disease. We aimed to assess the role of circulating tumour cells (CTCs) as a predictive biomarker in recurrent/metastatic head and neck cancer (head and neck squamous cell carcinoma (HNSCC)). Methodology Thirty-five patients receiving palliative chemotherapy underwent blood sampling [2 mL in Ethylenediaminetetraacetic acid (EDTA) vial] at baseline and at 3 months intervals. The CTCs were isolated and evaluated using anti-epithelial cell adhesion molecule antibody-based enrichment using the OncoDiscover platform. Results CTCs isolated from 80% of patients (n = 28) showed the sensitivity of cell detection at the baseline and 3 months intervals. The median CTC count was 1/1.5 mL of blood and the concordance with clinic-radiological outcomes was 51.4%. The median CTC count (1 (range:0-4) to 0 (range:0-1)) declined at 3 months in responders, while the non-responders had an increase in levels (0 (range :0-2) to 1 (range :0-3)). Although CTCs positively correlated with progression-free survival (PFS) and overall survival (OS), the association of CTCs did not show a significant difference with these parameters (PFS: 6 months versus 4 months; hazard ratio: 0.68; 95% confidence interval (CI): 0.29-1.58, p = 0.323; OS: 10 months versus 8 months; hazard ratio: 0.54; 95% (CI):0.18-1.57 p = 0.216) between CTC positive and CTC negative patients at 3 months. Conclusion This study highlights the utility of CTC as a disease progression-monitoring tool in recurrent HNSCC patients. Our findings suggest the potential clinical utility of CTC and the need for exploration in upfront settings of the disease as well (NCT: CTRL/2020/02/023378).
Collapse
Affiliation(s)
- Annie Kanchan Baa
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Suman Bhaskar
- Department of Radiation Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Ahitagni Biswas
- Department of Radiation Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Alok Thakar
- Department of Head and Neck Surgery, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Rajeev Kumar
- Department of Head and Neck Surgery, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Sreeja Jayant
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Alain D’Souza
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Vikas Jadhav
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Atul Bharde
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Raja Pramanik
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
7
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
8
|
Bahig H, Huang SH, O’Sullivan B. Oligometastatic Head and Neck Cancer: Challenges and Perspectives. Cancers (Basel) 2022; 14:cancers14163894. [PMID: 36010888 PMCID: PMC9405984 DOI: 10.3390/cancers14163894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Oligometastasis represents a disease state and an opportunity for cure when metastases emerge. Emerging evidence supports that most head and neck cancer patients with oligometastatic disease are likely to benefit from curative intent local ablative therapy if appropriate selection criteria are applied. Biomarkers to predict development of oligometastasis, as well as to identify which patients could benefit from a radical intent approach, are under investigation. This review summarizes recent knowledge about the characteristics, investigational efforts, and evidence for local ablation regarding oligometastasis in head and neck cancer. We also describe the challenges and opportunities in patient selection and discuss the role of radiotherapy and immunotherapy combinations to enhance anti-tumor immunity. Abstract A minority of patients with metastatic head and neck squamous cell carcinoma (HNSCC) present with oligometastatic disease. Oligometastasis not only reflects a disease state, but might also present an opportunity for cure in the metastatic setting. Radical ablation of all oligometastatic sites may confer prolonged survival and possibly achieve cure in some patients. However, substantial debate remains about whether patients with oligometastatic disease could benefit from curative intent therapy or whether aggressive treatments expose some patients to futile toxicity. Optimal selection of patients, carefully balancing the currently known prognostic factors against the risks of toxicity is critical. Emerging evidence suggests that patients with a limited burden of disease, viral-related pharyngeal cancer, metachronous metastasis and lung-only metastasis may benefit most from this approach. Efforts are underway to identify biomarkers that can detect oligometastasis and better select patients who would derive the maximum benefit from an aggressive radical approach. The combination of radiotherapy and immunotherapy promises to enhance the anti-tumoral immune response and help overcome resistance. However, optimization of management algorithms, including patient selection, radiation dose and sequencing, will be critical in upcoming clinical trials. This review summarizes recent knowledge about the characteristics and investigational efforts regarding oligometastasis in HNSCC.
Collapse
Affiliation(s)
- Houda Bahig
- Department of Radiation Oncology, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
- Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Brian O’Sullivan
- Department of Radiation Oncology, University of Montreal, Montreal, QC H2X 3E4, Canada
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
- Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
9
|
Geng N, Chen S, Liu J, Cao W, Zhang D, Feng C. Circulating tumor cells in blood as a prognostic biomarker in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:213-219. [PMID: 35725964 DOI: 10.1016/j.oooo.2021.12.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/02/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The study aimed to evaluate the role of circulating tumor cells (CTCs) as a prognostic biomarker of tongue squamous cell carcinoma (TSCC). STUDY DESIGN CTC levels in the peripheral blood of 50 patients with TSCC at baseline (i.e., before treatment) and of 8 healthy donors were determined using the NanoVelcro system. The relationship between CTC levels and clinicopathologic parameters and clinical outcomes such as recurrence, metastasis, and death during follow-up (mean 17 months) was analyzed. RESULTS CTCs levels were closely correlated with TSCC clinical staging (P = .002), N staging (P = .007), and progression status (P = .002) in TSCC patients. Receiver operating characteristic (ROC) analysis revealed that the count of CTC ≥4 (area under curve: 0.832 [95% confidence interval 0.695-0.950]; sensitivity: 0.83; specificity: 0.75; P < .001) was a better prognostic marker than TNM stage (area under curve: 0.692 [0.536-0.848]; sensitivity: 0.83; specificity: 0.55; P = .023). In addition, univariate and multivariate analysis showed that the CTC was an important and independent predictive factor for overall survival and disease-free survival (P < .001). CONCLUSIONS CTC was an independent prognostic indicator in patients with TSCC. CTC may be used as an auxiliary parameter to predict the prognosis of TSCC.
Collapse
Affiliation(s)
- Ningbo Geng
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shan Chen
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiameng Liu
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China; Department of Stomatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, People's Republic of China
| | - Wei Cao
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Dandan Zhang
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chongjin Feng
- Department of Stomatology, The Frist Affiliated Hosptial of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Qayyumi B, Bharde A, Aland G, D'Souza A, Jayant S, Singh N, Tripathi S, Badave R, Kale N, Singh B, Arora S, Gore I, Singh A, Vasudevan A, Prabhash K, Khandare J, Chaturvedi P. Circulating tumor cells as a predictor for poor prognostic factors and overall survival in treatment naïve oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:73-83. [PMID: 35595620 DOI: 10.1016/j.oooo.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of circulating tumor cells (CTCs) and their correlation with prognostic factors and clinical outcomes in treatment-naive patients with oral squamous cell carcinoma. STUDY DESIGN CTCs were isolated using OncoDiscover technique from presurgically obtained peripheral blood of 152 patients with treatment naïve oral squamous cell carcinoma. Sensitivity analysis was performed by including 40 healthy controls. CTCs cutoff values for clinicopathologic factors were obtained from receiver operating characteristic curves. Multivariate models determined the significance of CTC as independent variables. Kaplan-Meier analysis differentiated in overall survival between CTC values corresponding to the stage. RESULTS Sensitivity, specificity, and accuracy of CTC detection were 94.32%, 98%, and 95.17%, respectively. Platform differentiated true positives at >3.5 CTCs (P < .00001). CTCs above 20.5 were suggestive of nodal metastasis (P < .0001) with a linear trend for detecting occult metastasis (P = .061). Early and advanced stages could be differentiated by >13.5 CTCs (P < .0001). Elevated CTCs were significantly associated with extranodal extension (>21.45 CTCs, P = .025), perineural invasion (>19.35 CTCs, P = .049), and depth of invasion (>12.5 CTCs, P = .0038). Median survival was reduced by 19 months when CTCs were >13. CONCLUSIONS Preoperative CTC levels demonstrated a strong correlation with adverse clinicopathology factors and suggested its role as a sensitive prognostic marker to predict survival outcome and disease progress.
Collapse
Affiliation(s)
- Burhanuddin Qayyumi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Atul Bharde
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | | | - Alain D'Souza
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Sreeja Jayant
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Nitin Singh
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Swati Tripathi
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Reecha Badave
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Narendra Kale
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Balram Singh
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Smriti Arora
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Isha Gore
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Arjun Singh
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Kumar Prabhash
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Jayant Khandare
- Actorius Innovations and Research Pvt. Ltd., Pune, India; Actorius Innovations and Research Co, Simi Valley, CA, USA; OneCell Diagnostics Inc, Cupertino, CA, USA; OneCell Diagnostics Pvt. Ltd., Pune, India.
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
11
|
Lin KC, Ting LL, Chang CL, Lu LS, Lee HL, Hsu FC, Chiou JF, Wang PY, Burnouf T, Ho DCY, Yang KC, Chen CY, Chen CH, Wu CZ, Chen YJ. Ex Vivo Expanded Circulating Tumor Cells for Clinical Anti-Cancer Drug Prediction in Patients with Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13236076. [PMID: 34885184 PMCID: PMC8656523 DOI: 10.3390/cancers13236076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The conventional methods that seek to predict clinical treatment response are based on the number of circulating tumor cells (CTCs) present in liquid biopsies or genetic profiling of extracted CTCs. This paper presents a novel process by which CTCs can be extracted from blood samples taken from head and neck cancer patients and then expanded ex vivo to form organoids that can be tested with a panel of anti-cancer treatments. The resulting drug sensitivity profiles derived from cisplatin treatment of organoids were subsequently found to correlate with clinical treatment response to cisplatin in patients. CTCs extracted from liquid biopsies for ex vivo expansion negates the need for complicated and potentially risky biopsies of tumor material, thereby supporting the application of this procedure for checkups and treatment monitoring. Abstract The advanced-stage head and neck cancer (HNC) patients respond poorly to platinum-based treatments. Thus, a reliable pretreatment method for evaluating platinum treatment response would improve therapeutic efficiency and outcomes. This study describes a novel strategy to predict clinical drug responses in HNC patients by using eSelect, a lab-developed biomimetic cell culture system, which enables us to perform ex vivo expansion and drug sensitivity profiling of circulating tumor cells (CTCs). Forty liquid biopsies were collected from HNC patients, and the CTCs were expanded ex vivo using the eSelect system within four weeks. Immunofluorescence staining confirmed that the CTC-derived organoids were positive for EpCAM and negative for CD45. Two illustrative cases present the potential of this strategy for evaluating treatment response. The statistical analysis confirmed that drug sensitivity in CTC-derived organoids was associated with a clinical response. The multivariant logistic regression model predicted that the treatment accuracy of chemotherapy responses achieved 93.75%, and the area under the curves (AUCs) of prediction models was 0.8841 in the whole dataset and 0.9167 in cisplatin specific dataset. In summary, cisplatin sensitivity profiles of patient-derived CTCs expanded ex vivo correlate with a clinical response to cisplatin treatment, and this can potentially underpin predictive assays to guide HNC treatments.
Collapse
Affiliation(s)
- Kuan-Chou Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Lai-Lei Ting
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Fang-Chi Hsu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan;
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne 3122, Australia;
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Dennis Chun-Yu Ho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Kai-Chiang Yang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chang-Yu Chen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Dentistry, Lo-Tung Poh-Ai Hospital, Yilan 265, Taiwan
- Correspondence: (C.-Z.W.); (Y.-J.C.)
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (C.-Z.W.); (Y.-J.C.)
| |
Collapse
|
12
|
Payne K, Brooks JM, Taylor GS, Batis N, Noyvert B, Pan Y, Nankivell P, Mehanna H. Immediate Sample Fixation Increases Circulating Tumour Cell (CTC) Capture and Preserves Phenotype in Head and Neck Squamous Cell Carcinoma: Towards a Standardised Approach to Microfluidic CTC Biomarker Discovery. Cancers (Basel) 2021; 13:cancers13215519. [PMID: 34771681 PMCID: PMC8583049 DOI: 10.3390/cancers13215519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) have shown potential to act as markers of disease and prognosis in head and neck squamous cell carcinoma (HNSCC). However, there are a number of methods and devices reported to isolate and characterise CTCs. Translating CTC markers to clinical practice, for patient benefit, requires a reliable, reproducible and standardised approach. We report the benefit of the Parsortix microfluidic CTC enrichment platform in HNSCC. We demonstrate consistent cell capture rates between 10 and 100 cells/mL of whole blood. Analysis of gene expression with unfixed cells before and after Parsortix enrichment demonstrated a cell stress response and downregulation of key genes. We highlight the benefit of using a fixative blood collection tube (Transfix) to increase cell capture rate and preserve the CTC marker expression profile. Such evidence is crucial when designing sample processing protocols for large cohort multi-centre clinical trials investigating CTCs in any cancer type. Abstract Introduction: Research demonstrates strong evidence that circulating tumour cells (CTCs) can provide diagnostic and/or prognostic biomarkers in head and neck squamous cell carcinoma (HNSCC) and a potential tool for therapeutic stratification. However, the question still remains as to the optimum method of CTC enrichment and how this can be translated into clinical practice. We aimed to evaluate the Parsortix microfluidic device for CTC enrichment and characterisation in HNSCC, seeking to optimise a sample collection and processing protocol that preserves CTC integrity and phenotype. Method: Spiking experiments of the FaDu and SCC040 HNSCC cell lines were used to determine the Parsortix capture rate of rare “CTC-like” cells. Capture rates of cancer cells spiked into EDTA blood collections tubes (BCTs) were compared to the Transfix fixative BCT and Cytodelics whole blood freezing protocol. The Lexogen Quantseq library preparation was used to profile gene expression of unfixed cells before and after microfluidic enrichment and enriched cell line spiked Transfix blood samples. An antibody panel was optimised to enable immunofluorescence microscopy CTC detection in HNSCC patient Transfix blood samples, using epithelial (EpCAM) and mesenchymal (N-cadherin) CTC markers. Results: Across a spiked cell concentration range of 9–129 cells/mL, Parsortix demonstrated a mean cell capture rate of 53.5% for unfixed cells, with no significant relationship between spiked cell concentration and capture rate. Samples preserved in Transfix BCTs demonstrated significantly increased capture rates at 0 h (time to processing) compared to EDTA BCTs (65.3% vs. 51.0%). Capture rates in Transfix BCTs were maintained at 24 h and 72 h timepoints, but dropped significantly in EDTA BCTs. Gene expression profiling revealed that microfluidic enrichment of unfixed cell lines caused downregulation of RNA processing/binding gene pathways and upregulation of genes involved in cell injury, apoptosis and oxidative stress. RNA was successfully extracted and sequenced from Transfix preserved cells enriched using Parsortix, demonstrating epithelial specific transcripts from spiked cells. In a proof-of-concept cohort of four patients with advanced HNSCC, CTCs were successfully identified and visualised with epithelial and epithelial-mesenchymal phenotypes. Conclusion: We have optimised a protocol for detection of CTCs in HNSCC with the Parsortix microfluidic device, using Transfix BCTs. We report a significant benefit, both in terms of cell capture rates and preserving cell phenotype, for using a fixative BCT- particularly if samples are stored before processing. In the design of large cohort multi-site clinical trials, such data are of paramount importance.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
- Correspondence:
| | - Jill M. Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Boris Noyvert
- Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham B15 2TT, UK; (B.N.); (Y.P.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Yi Pan
- Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham B15 2TT, UK; (B.N.); (Y.P.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| |
Collapse
|
13
|
Zhang SY, Qin S, Li GH, Yi YQ, Fu HJ, Gao YJ, Sun ML. Detection of peripheral blood circulating tumor cells in oral squamous cell carcinoma and its clinical significance. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:591-597. [PMID: 34636209 DOI: 10.7518/hxkq.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aims to investigate the diagnostic value of peripheral blood circulating tumor cells (CTCs) in oral squamous cell carcinoma (OSCC) and its correlation with the clinicopathological features of OSCC. METHODS Ninety-three patients diagnosed as OSCC in the First Affiliated Hospital of Zhengzhou University from May 2019 to May 2020 were selected as the experimental group, and 20 healthy volunteers were employed as the control group. The CTCs value of peripheral blood of the patients were measured by CTCs detection technology, and its clinical significance was analyzed. RESULTS The CTCs values in the experimental group were higher than those in the control group, and the difference was statistically significant (P<0.000 1). The CTCs value in the peripheral blood of patients in the experimental group were not correlated with gender, site of onset, and presence or absence of peripheral tissue infiltration (P>0.05), but was correlated with age (P=0.022), tumor T stage (P=0.02), tumor N stage (P=0.007 5), tumor M stage (P=0.013), clinical stage (P=0.029), early or late stage (P=0.022), tumor differentiation degree (P<0.001), and node metastasis (P=0.006 4). The AUC value of CTCs in OSCC diagnosis was 0.925, and the energy efficiency was statistically significant [P=0.000, 95%CI (0.876, 0.974)]. When the CTC value was 8.450 FU/3 mL, the maximum value of the Yoden index was 0.853, and the sensitivity and specificity of OSCC diagnosis were 90.3% and 95.0%, respectively. The AUC value of CTCs in the diagnosis of OSCC metastasis was 0.691, and the energy efficiency was statistically significant [P=0.000, 95%CI (0.580, 0.803)]. When the blood CTC value was 12.250 FU/3 mL, the maximum value of Yoden index was 0.367, the sensitivity was 63.6%, and the specificity was 73.3%. Multivariate regression analysis showed that buccal tumor was negatively correlated with CTCs in patients with OSCC (P=0.001 08), N2 stage (P=0.000 74) and M stage (P=0.026 38). High differentiation (P<0.000 1) and moderate differentiation (P=0.001 5) were negatively correlated with CTCs values in patients with OSCC. CONCLUSIONS Peripheral blood CTCs has important clinical value for early screening, auxiliary diagnosis, evaluation of metastasis, and determination of malignant degree, progression, and pathological grade of OSCC and a relatively reliable tumor detection indicator.
Collapse
Affiliation(s)
- Shuai-Yuan Zhang
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Qin
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guang-Hui Li
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ya-Qun Yi
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hao-Jie Fu
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ya-Jing Gao
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ming-Lei Sun
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Henn TE, Anderson AN, Hollett YR, Sutton TL, Walker BS, Swain JR, Sauer DA, Clayburgh DR, Wong MH. Circulating hybrid cells predict presence of occult nodal metastases in oral cavity carcinoma. Head Neck 2021; 43:2193-2201. [PMID: 33835633 DOI: 10.1002/hed.26692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Levels of circulating hybrid cells (CHCs), a newly identified circulating tumor cell (CTC), correlate with disease stage and progression in cancer. We investigated their utility to risk-stratify patients with clinically N0 (cN0) oral cavity squamous cell carcinoma (OCSCC), and to identify patients with occult cervical lymph node metastases (pN+). METHODS We analyzed peripheral blood samples for CHCs with co-expression of cytokeratin (tumor) and CD45 (leukocyte) from 22 patients with cN0 OCSCC using immunofluorescence microscopy, then correlated levels with pathologic lymph node status. RESULTS CHC levels exceeded CTCs and correlated with the presence of both clinically overt (p = 0.002) and occult nodal metastases (p = 0.006). CONCLUSIONS For evaluated cN0 OCSCC patients, those with cN0 → pN+ status harbored elevated CHC levels compared to patients without occult disease. Our findings highlight a promising blood-based biologic assay with potential utility to determine the necessity of surgical neck dissection for staging and treatment.
Collapse
Affiliation(s)
- Tara E Henn
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yvette R Hollett
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Brett S Walker
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - John R Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - David A Sauer
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel R Clayburgh
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA.,Operative Care Division, Veterans Affairs Medical Center, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Liu K, Chen N, Wei J, Ma L, Yang S, Zhang X. Clinical significance of circulating tumor cells in patients with locally advanced head and neck squamous cell carcinoma. Oncol Rep 2020; 43:1525-1535. [PMID: 32323844 PMCID: PMC7108088 DOI: 10.3892/or.2020.7536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the clinical relevance of circulating tumor cells (CTCs) in patients with locally advanced head and neck squamous cell carcinoma (LA‑HNSCC), particularly in patients with nasopharyngeal and hypopharyngeal squamous cell carcinoma. CTCs were isolated using negative immunomagnetic bead enrichment and were identified by fluorescence in situ hybridization. Youden's index and the receiver operating characteristic (ROC) curve were used to select the optimal CTC baseline value. χ2 test or Fisher's test were used to determine the association between CTC counts and clinical parameters, curative effects and prognosis. The Kaplan‑Meier estimator was used to analyze overall survival (OS) and progression‑free survival (PFS). In the present study, 356 peripheral blood samples (178 pretreatment samples and 178 post‑treatment samples) from 178 patients were examined. The results revealed that the pretreatment CTC detection rate was 73.8%. The minimum, maximum and median CTC counts were 1, 22 and 2/3.2 ml, respectively. The number of polyploid CTCs was associated with distant metastasis (P=0.026). In addition, patients with undetectable CTCs, and decreasing or negative CTCs post‑treatment tended to have a good prognosis (P<0.05). For nasopharyngeal squamous cell carcinoma, the PFS of patients with increased CTCs and CTCs ≥2/3.2 ml after treatment was significantly lower (P<0.05). For hypopharyngeal squamous cell carcinoma, it was suggested that CTCs with a cutoff value of 3 may be used to evaluate PFS and OS before and after treatment. In conclusion, CTCs may be used to monitor disease progression and the response to chemoradiotherapy for patients with LA‑HNSCC. Furthermore, CTCs are a better predictor of the prognosis of hypopharyngeal squamous cell carcinoma than that of nasopharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Kun Liu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, P.R. China; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment for Prevention and Treatment
| | - Nanxiang Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, P.R. China; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment for Prevention and Treatment
| | - Jian Wei
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, P.R. China; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment for Prevention and Treatment
| | - Lin Ma
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shiming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, P.R. China; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment for Prevention and Treatment
| | - Xinxin Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, P.R. China; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment for Prevention and Treatment
| |
Collapse
|
16
|
Kulasinghe A, Hughes BGM, Kenny L, Punyadeera C. An update: circulating tumor cells in head and neck cancer. Expert Rev Mol Diagn 2019; 19:1109-1115. [PMID: 31680565 DOI: 10.1080/14737159.2020.1688145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Local and distant metastatic disease occurs in approximately half of head and neck squamous cell carcinoma (HNSCC) patients, representing an ongoing cause for treatment failure. Circulating tumor cells (CTCs) are transient cancer cells which have the capacity to metastasize to distant sites such as the lungs and liver in HNSCC. When metastatic disease is radiographically evident, the patient prognosis is often poor. Therefore, methodologies to assess micrometastatic disease are needed to (1) identify patients likely to develop metastatic disease and (2) treat and monitor these patients more aggressively. Whilst CTCs are well documented in other tumor streams such as breast, colorectal cancer and prostate cancers, the data and clinical utility in HNSCC remains limited.Areas covered: Here we summarize the recent advances of CTCs and applications in HNSCC.Expert opinion: CTC enumeration can be prognostic in HNSCC; further studies are warranted to investigate the role of CTC clusters in HNSCC; CTC culture (in vivo/ex vivo) may present a possibility to expand these rare cells to a critical mass for functional testing; PD-L1 expression of HNSCC CTCs may present a means by which to determine patients likely to respond to therapy; a HNSCC CTC-specific marker is warranted.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Research Team, The School of Biomedical, Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Translational Research Institute, Brisbane, Australia
| | - Brett G M Hughes
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,University of Queensland, Australia
| | - Liz Kenny
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,University of Queensland, Australia.,Queensland Health, Central Integrated Regional Cancer Services
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Research Team, The School of Biomedical, Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Translational Research Institute, Brisbane, Australia
| |
Collapse
|
17
|
Payne K, Brooks J, Spruce R, Batis N, Taylor G, Nankivell P, Mehanna H. Circulating Tumour Cell Biomarkers in Head and Neck Cancer: Current Progress and Future Prospects. Cancers (Basel) 2019; 11:E1115. [PMID: 31387228 PMCID: PMC6721520 DOI: 10.3390/cancers11081115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) continues to carry a significant burden of disease both for patients and health services. Facilitating biomarker-led treatment decisions is critical to improve outcomes in this group and deliver therapy tailored to the individual tumour biological profile. One solution to develop such biomarkers is a liquid biopsy analysing circulating tumour cells (CTCs)-providing a non-invasive and dynamic assessment of tumour specific alterations in 'real-time'. A major obstacle to implementing such a test is the standardisation of CTC isolation methods and subsequent down-stream analysis. Several options are available, with a recent shift in vogue from positive-selection marker-dependent isolation systems to marker-independent negative-selection techniques. HNC single-CTC characterisation, including single-cell sequencing, to identify actionable mutations and gene-expression signatures has the potential to both guide the understanding of patient tumour heterogeneity and support the adoption of personalised medicine strategies. Microfluidic approaches for isolating CTCs and cell clusters are emerging as novel technologies which can be incorporated with computational platforms to complement current diagnostic and prognostic strategies. We review the current literature to assess progress regarding CTC biomarkers in HNC and potential avenues for future translational research and clinical implementation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel Spruce
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
18
|
Zheng W, Zhang Y, Guo L, Wang S, Fang M, Mao W, Lou J. Evaluation of therapeutic efficacy with CytoSorter ® circulating tumor cell-capture system in patients with locally advanced head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:5857-5869. [PMID: 31303792 PMCID: PMC6603285 DOI: 10.2147/cmar.s208409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023] Open
Abstract
Objective: This study aimed to investigate the feasibility of utilizing CytoSorter® system to detect circulating tumor cells (CTCs) and clinical value of CTCs in patients with locally advanced head and neck squamous cell carcinoma (LAHNSCC). Methods: 31 patients with LAHNSCC, 12 healthy volunteers, and 6 patients with benign tumor serving as controls were enrolled in this study. CTCs were enriched with the CytoSorter®, a microfluidic based immune capture system. CTC detection was performed before and after induction chemotherapy, as well as after surgery and/or radiotherapy. Correlations between CTC enumerations at different time points and survival outcome and recurrence risk were evaluated. The correlation between CTCs and clinicopathological characteristics was appraised. Follow-up of patients continued until March 2019. Results: While CTCs were not found in the controls, they were detected in 24 of 31 LAHNSCC patients. CTCs could be used to distinguish diseased people from the healthy (P<0.0001). CTCs were statistically associated with patient age (P=0.037, >60 years old vs<60 years old) and lymph node metastasis (P= 0.034, N0N1 VS N2N3). Most patients had significantly reduced CTCs at the end of treatment. Patients with partial remission of tumor after induction therapy had more CTCs than those with complete remission of tumor. Patients with higher CTCs counts prior to treatment had higher chance of developing local recurrence of tumor after treatment (P=0.0187). Conclusion: CTCs were successfully isolated in LAHNSCC patients using CytoSorter® system with better sensibility. CTCs can be used to differentiate LAHNSCC patients from those with benign HNSCC tumor or healthy volunteers, and as markers to monitor patient’s response to treatment and predict the local tumor recurrence after treatment. CTC detection at baseline has the greatest prognostic potency in LAHNSCC patients.
Collapse
Affiliation(s)
- Weihui Zheng
- Center of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.,Department of Head and Neck Surgery, Zhejiang Cancer Hospital & Creative Laboratory of Head and Neck Oncology in Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Yibiao Zhang
- Department of Clinical Laboratory, Jinhua Guangfu Hospital, Jinhua 321000, People's Republic of China
| | - Liang Guo
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital & Creative Laboratory of Head and Neck Oncology in Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Shengye Wang
- Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Meiyu Fang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Weimin Mao
- Center of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Jianlin Lou
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital & Creative Laboratory of Head and Neck Oncology in Zhejiang Province, Hangzhou 310022, People's Republic of China
| |
Collapse
|
19
|
Economopoulou P, Koutsodontis G, Avgeris M, Strati A, Kroupis C, Pateras I, Kirodimos E, Giotakis E, Kotsantis I, Maragoudakis P, Gorgoulis V, Scorilas A, Lianidou E, Psyrri A. HPV16 E6/E7 expression in circulating tumor cells in oropharyngeal squamous cell cancers: A pilot study. PLoS One 2019; 14:e0215984. [PMID: 31071126 PMCID: PMC6508656 DOI: 10.1371/journal.pone.0215984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Objectives Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV+ OPSCC) is increasing in incidence. Although HPV+ OPSCC has favorable prognosis, 10 to 25% of HPV+ OPSCCs eventually recur. We sought to evaluate the feasibility of detection of HPV16 E6/E7 expression in Circulating Tumor Cells (CTCs) and its utility as a prognostic tool in HPV16-associated OPSCC. Materials and methods We developed a highly sensitive RT-qPCR assay for HPV mRNA expression in EpCAM(+) CTCs. In 22 patients with early stage and locally advanced OPSCC we evaluated HPV16 E6/E7 expression in the EpCAM(+) CTC fraction at baseline and at the end of concurrent chemoradiotherapy. HPV status in pre-therapy formalin-fixed paraffin-embedded (FFPE) tumor biopsies was assessed by p16 immunohistochemistry and polymerase chain reaction (PCR) and double positives were subjected to Real-time qPCR assay for detection of HPV16, 18 and 31 types. Results Fourteen of 22 OPSCC (63.6%) were HPV DNA+/p16+. Among HPV+/p16+ patients, 10 patients (71.4%) were HPV16 DNA+. HPV16 E6/E7(+) CTCs were detected in 3 of 10 patients (30%) at baseline and 4 of 9 patients (44.4%) at the end-of-treatment, all of which were p16+/HPV16 DNA+. Survival analysis showed a significantly higher risk for disease relapse (p = 0.001) and death (p = 0.005) in patients with HPV16 E6/E7(+) baseline CTCs. Conclusion Detection of HPV E6/E7(+) CTCs might be a useful noninvasive test in liquid biopsy samples for determination of a clinically relevant HPV infection in HPV+ OPSCC. Combined interpretation of HPV E6/E7(+) CTCs with UICC staging data may lead to alteration of risk definition of patient subsets, with improved risk discrimination in early-stage disease.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| | - George Koutsodontis
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, Athens, Greece
| | - Areti Strati
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, Athens, Greece
| | - Christos Kroupis
- Department of Clinical Biochemistry, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| | - Ioannis Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Goudi, Athens, Greece
| | - Euthymios Kirodimos
- Department of Otolaryngology-Head and Neck Surgery, Hippokration General Hospital, University of Athens, Athens, Greece
| | - Evangelos Giotakis
- Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Ioannis Kotsantis
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| | - Pavlos Maragoudakis
- 2nd Otolaryngology Department, Attikon University Hospital, Haidari, Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Goudi, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
- * E-mail:
| |
Collapse
|
20
|
Gerlee P, Johansson M. Inferring rates of metastatic dissemination using stochastic network models. PLoS Comput Biol 2019; 15:e1006868. [PMID: 30933969 PMCID: PMC6459558 DOI: 10.1371/journal.pcbi.1006868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/11/2019] [Accepted: 02/14/2019] [Indexed: 11/19/2022] Open
Abstract
The formation of metastases is driven by the ability of cancer cells to disseminate from the site of the primary tumour to target organs. The process of dissemination is constrained by anatomical features such as the flow of blood and lymph in the circulatory system. We exploit this fact in a stochastic network model of metastasis formation, in which only anatomically feasible routes of dissemination are considered. By fitting this model to two different clinical datasets (tongue & ovarian cancer) we show that incidence data can be modelled using a small number of biologically meaningful parameters. The fitted models reveal site specific relative rates of dissemination and also allow for patient-specific predictions of metastatic involvement based on primary tumour location and stage. Applied to other data sets this type of model could yield insight about seed-soil effects, and could also be used in a clinical setting to provide personalised predictions about the extent of metastatic spread.
Collapse
Affiliation(s)
- Philip Gerlee
- Mathematical Sciences, Chalmers University of Technology, Sweden
- Mathematical Sciences, University of Gothenburg, Sweden
| | - Mia Johansson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Davis KA, Wu PJ, Cahall CF, Li C, Gottipati A, Berron BJ. Coatings on mammalian cells: interfacing cells with their environment. J Biol Eng 2019; 13:5. [PMID: 30675178 PMCID: PMC6337841 DOI: 10.1186/s13036-018-0131-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.
Collapse
Affiliation(s)
- Kara A. Davis
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Pei-Jung Wu
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Calvin F. Cahall
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Anuhya Gottipati
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Brad J. Berron
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| |
Collapse
|
22
|
Kulasinghe A, Schmidt H, Perry C, Whitfield B, Kenny L, Nelson C, Warkiani ME, Punyadeera C. A Collective Route to Head and Neck Cancer Metastasis. Sci Rep 2018; 8:746. [PMID: 29335441 PMCID: PMC5768780 DOI: 10.1038/s41598-017-19117-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/21/2017] [Indexed: 01/03/2023] Open
Abstract
Distant metastasis (DM) from head and neck cancers (HNC) portends a poor patient prognosis. Despite its important biological role, little is known about the cells which seed these DM. Circulating tumour cells (CTCs) represent a transient cancer cell population, which circulate in HNC patients’ peripheral blood and seed at distant sites. Capture and analysis of CTCs offers insights into tumour metastasis and can facilitate treatment strategies. Whilst the data on singular CTCs have shown clinical significance, the role of CTC clusters in metastasis remains limited. In this pilot study, we assessed 60 treatment naïve HNC patients for CTCs with disease ranging from early to advanced stages, for CTC clusters utilizing spiral CTC enrichment technology. Single CTCs were isolated in 18/60–30% (Ranging from Stage I-IV), CTC clusters in 15/60–25% (exclusively Stage IV) with 3/15–20% of CTC clusters also containing leukocytes. The presence of CTC clusters associated with the development of distant metastatic disease(P = 0.0313). This study demonstrates that CTC clusters are found in locally advanced patients, and this may be an important prognostic marker. In vivo and in vitro studies are warranted to determine the role of these CTC clusters, in particular, whether leukocyte involvement in CTC clusters has clinical relevance.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Tranlsational Research Institute, Brisbane, Australia
| | - Henri Schmidt
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Tranlsational Research Institute, Brisbane, Australia
| | - Chris Perry
- Department of Otolaryngology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Tranlsational Research Institute, Brisbane, Australia
| | - Bernard Whitfield
- Department of Otolaryngology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Central Integrated Regional Cancer Service, Queensland Health, Brisbane, Queensland, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Tranlsational Research Institute, Brisbane, Australia
| | - Majid E Warkiani
- The School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,Tranlsational Research Institute, Brisbane, Australia.
| |
Collapse
|
23
|
Kulasinghe A, Tran THP, Blick T, O'Byrne K, Thompson EW, Warkiani ME, Nelson C, Kenny L, Punyadeera C. Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Sci Rep 2017; 7:42517. [PMID: 28198401 PMCID: PMC5309765 DOI: 10.1038/srep42517] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Whilst locoregional control of head and neck cancers (HNCs) has improved over the last four decades, long-term survival has remained largely unchanged. A possible reason for this is that the rate of distant metastasis has not changed. Such disseminated disease is reflected in measurable levels of cancer cells in the blood of HNC patients, referred to as circulating tumour cells (CTCs). Numerous marker-independent techniques have been developed for CTC isolation and detection. Recently, microfluidics-based platforms have come to the fore to avoid molecular bias. In this pilot, proof of concept study, we evaluated the use of the spiral microfluidic chip for CTC enrichment and subsequent detection in HNC patients. CTCs were detected in 13/24 (54%) HNC patients, representing both early to late stages of disease. Importantly, in 7/13 CTC-positive patients, CTC clusters were observed. This is the first study to use spiral microfluidics technology for CTC enrichment in HNC.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Thao Huynh Phuoc Tran
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Tony Blick
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ken O'Byrne
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Qld, Australia
| | - Erik W Thompson
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,University of Melbourne, Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Majid E Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Colleen Nelson
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute Brisbane, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland; Royal Brisbane and Women's Hospital, Brisbane; Central Integrated Regional Cancer Service, Queensland Health, Queensland, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|